Bài 6: Lũy thừa của một số hữu tỉ (tiếp)

Nội dung bài giảng sẽ giới thiệu đến các em phần tiếp theo về Lũy thừa của một số hữu tỉ đó là Lũy thừa của một tích và Lũy thừa của một thương. Cùng với những ví dụ minh họa có hướng dẫn giải chi tiết sẽ giúp các em dễ dàng làm chủ nội dung bài học.

Tóm tắt lý thuyết

1.1. Luỹ thừa của một tích

Luỹ thừa của một tích bằng tích các luỹ thừa:

\({(x.y)^n} = {x^n}.{y^n}\)

1.2. Luỹ thừa của một thương

Luỹ thừa của một thương bằng thương các luỹ thừa.

\({\left( {\frac{x}{y}} \right)^n} = \frac{{{x^n}}}{{{y^n}}}\,\,\,(y \ne 0)\)


Ví dụ 1:

Tính:

a. \({( - 2)^3} + {2^2} + {( - 1)^{20}} + {( - 2)^0}\).

b. \({({3^2})^2} - {( - {5^2})^2} + {\left[ {{{( - 2)}^3}} \right]^2}\).

c.  \({2^4} + 8{\left[ {{{( - 2)}^2}:\frac{1}{2}} \right]^0} - {2^{ - 2}}.4 + {( - 2)^2}\).

Hướng dẫn giải:

a.

\(\begin{array}{l}{( - 2)^3} + {2^2} + {( - 1)^{20}} + {( - 2)^0}\\ =  - {2^3} + {2^2} + {1^{20}} + 1 =  - 8 + 4 + 1 + 1 =  - 2\end{array}\).

b.

 \(\begin{array}{l}{({3^2})^2} - {( - {5^2})^2} + {\left[ {{{( - 2)}^3}} \right]^2} = {3^{2.2}} - {5^{2.2}} + {( - {2^3})^2}\\ = {3^4} - {5^4} + {2^6} = 81 - 625 + 64 =  - 480\end{array}\).

c.

\(\begin{array}{*{20}{l}} {{2^4} + 8{{\left[ {{{( - 2)}^2}:\frac{1}{2}} \right]}^0} - {2^{ - 2}}.4 + {{( - 2)}^2}}\\ { = {2^4} + 8.1 - {2^{ - 2}}{{.2}^2} + 4 = 16 + 8 - {2^{ - 2 + 2}} + 4}\\ { = 16 + 8 - {2^0} + 4 = 16 + 8 - 1 + 4 = 27} \end{array}\)


Ví dụ 2:

So sánh:

a. \({2^{300}}\) và \({3^{200}}\).

b. \({5^{300}}\) và \({3^{500}}\).

Hướng dẫn giải:

a. Ta có:

\({2^{300}} = {({2^3})^{100}} = {8^{100}}\)

\({3^{200}} = {({3^2})^{100}} = {9^{100}}\)

Vì \({8^{100}} < {9^{100}}\)

Vậy \({2^{300}} < {3^{200}}\).

b. Ta có:

\({5^{300}} = {({5^3})^{100}} = {125^{100}}\)

 \({3^{500}} = {({3^5})^{100}} = {243^{100}}\)

Vì \({125^{100}} < {243^{100}}\)

Vậy \({5^{300}} < {3^{500}}\).


Ví dụ 3:

Chứng minh rằng: \({10^9} + {10^8} + {10^7}\) chia hết cho 222.

Hướng dẫn giải:

Ta có:

\(\begin{array}{l}{10^9} + {10^8} + {10^7} = {10^7}({10^2} + 10 + 1)\\ = {(2.5)^7}({10^2} + 10 + 1)\\ = {2^7}{.5^7}(100 + 10 + 1)\\ = {2^6}{.5^7}.2.111\\ = {2^6.5^7}.222\,\, \vdots \,\,222\end{array}\).

Vậy \({10^9} + {10^8} + {10^7}\) chia hết cho 222.

Bài tập minh họa

 
 

Bài 1:

Tính:

a. \({\left( {\frac{1}{2}} \right)^3}.{\left( {\frac{1}{4}} \right)^2}\)

b. \(\frac{{{{27}^2}{{.8}^5}}}{{{6^6}{{.32}^3}}}\)

Hướng dẫn giải:

a. \({\left( {\frac{1}{2}} \right)^3}.\left[ {{{\left( {\frac{1}{2}} \right)}^2}} \right]\)

\( = {\left( {\frac{1}{2}} \right)^3}.{\left( {\frac{1}{2}} \right)^4} = {\left( {\frac{1}{2}} \right)^7} = \frac{1}{{128}}\)

b.

\(\frac{{{{({3^3})}^2}.{{({2^3})}^5}}}{{{{(2.3)}^6}.{{({2^5})}^3}}} = \frac{{{3^6}{{.2}^{15}}}}{{{2^6}{{.3}^6}{{.2}^{15}}}} = \frac{1}{{{2^6}}} = \frac{1}{{64}}\)


Bài 2:

Tìm x biết:

a. \({(x - 2)^2} = 1\)

b. \({(x - 1)^{x + 2}} = {(x - 1)^{x + 4}}\)

Hướng dẫn giải:

a. Ta có: \({(x - 2)^2} = 1\). Do đó

\(\begin{array}{l}x - 2 = 1 \Rightarrow x = 3\\x - 2 =  - 1 \Rightarrow x = 1\end{array}\)

Vậy x = 1; 3

b. \({(x - 1)^{x + 2}} = {(x - 1)^{x + 4}}\)

Nếu x = 1 thì \({0^3} = {0^5}\) đúng. Ta được một giá trị x = 1

Nếu \(x \ne 1 \Rightarrow x - 1 \ne 0.\) Chia 2 vế cho \({(x - 1)^{x + 2}}\) ta được: \({(x - 1)^{x + 4 - (x + 2) = 1}}\)

Hay \({(x - 1)^2} = 1.\) Do đó:

\(\begin{array}{l}x - 1 = 1 \Rightarrow x = 2\\x - 1 =  - 1 \Rightarrow x = 0\end{array}\)

Vậy x = 0; 1; 2


Bài 3:

Số các chữ số của \({4^{16}}{.5^{25}}\) là bao nhiêu?

Hướng dẫn giải:

\({4^{16}}{.5^{25}} = {({2^2})^{16}}{.5^{25}} = {2^{32}}{.5^{25}}\)

\( = {2^7}.{(2.5)^{25}} = {128.10^{25}}\)

Vậy số các chữ số của \({4^{16}}{.5^{25}}\)là 28.

3. Luyện tập Bài 6 Toán 7 tập 1

Qua bài giảng Lũy thừa của một số hữu tỉ này, các em cần hoàn thành 1 số mục tiêu mà bài đưa ra như : 

  • Nắm vững các công thức liên quan đến lũy thừa để làm được những bài tập trong phần này

3.1. Trắc nghiệm về Lũy thừa của số hữu tỉ

Các em có thể hệ thống lại nội dung kiến thức đã học được thông qua bài kiểm tra Trắc nghiệm Toán 7 Bài 6 cực hay có đáp án và lời giải chi tiết. 

    • A. \(\frac{1}{{10000}}\)
    • B. \({10^{ - 4}}\)
    • C. \(\frac{1}{{{{10}^4}}}\)
    • D. \(\frac{1}{{{{10}^{ - 4}}}}\)
    • A. \({\left( {a + b} \right)^2} = {a^2} + 2{\rm{a}}b + {b^2}\)
    • B. \({\left( {a + b} \right)^2} = {a^2} - ab + {b^2}\)
    • C. \({\left( {a + b} \right)^2} = {a^2} - ab + {b^2}\)
    • D. \({\left( {a - b} \right)^2} = {a^2} - 2{\rm{a}}b - {b^2}\)

Câu 2- Câu 5: Xem thêm phần trắc nghiệm để làm thử Online 

3.2. Bài tập SGK về Lũy thừa của số hữu tỉ

Các em có thể xem thêm phần hướng dẫn Giải bài tập Toán 7 Bài 6 để giúp các em nắm vững bài học và các phương pháp giải bài tập.

Bài tập 34 trang 22 SGK Toán 7 Tập 1

Bài tập 35 trang 22 SGK Toán 7 Tập 1

Bài tập 36 trang 22 SGK Toán 7 Tập 1

Bài tập 37 trang 22 SGK Toán 7 Tập 1

Bài tập 38 trang 22 SGK Toán 7 Tập 1

Bài tập 39 trang 23 SGK Toán 7 Tập 1

Bài tập 40 trang 23 SGK Toán 7 Tập 1

Bài tập 41 trang 23 SGK Toán 7 Tập 1

4. Hỏi đáp Bài 6 Chương 1 Đại số 7 tập 1

Trong quá trình học tập nếu có thắc mắc hay cần trợ giúp gì thì các em hãy comment ở mục Hỏi đáp, Cộng đồng Toán Chúng tôi sẽ hỗ trợ cho các em một cách nhanh chóng!

Chúc các em học tập tốt và luôn đạt thành tích cao trong học tập!

Tham khảo thêm

Bình luận

Có Thể Bạn Quan Tâm ?