Bài 12: Chia đa thức một biến đã sắp xếp

Trong bài học này chúng ta sẽ làm quen với Chia đa thức một biến đã sắp xếp. Đây là một phương pháp tổng quát nhất để thực hiện phép chia đa thức cho đa thức.

Tóm tắt lý thuyết

1.1 Kiến thức cần nhớ

Ví dụ: Thực hiện phép chia: 

\((2{x^5} + 3{x^3} + x):(2{x^2} + 1)\)

Ta thực hiện như sau

Đầu tiên ta đặt phép chia:

\[\begin{array}{*{20}{c}}
{2{x^5} + 3{x^3} + x}\\
{\,\,\,}
\end{array}\left| {\begin{array}{*{20}{c}}
{2{x^2} + 1}\\
\hline
{\,\,\,}
\end{array}} \right.\]

Sau đó lấy hạng tử bậc cao nhất của đa thức bị chia chia cho hạng tử bâc cao nhất của đa thức chia:

\[2{x^5}:2{x^2} = {x^3}\]

Nhân thương vừa tìm được cho đa thức chia rồi lấy đa thức bị chia trừ cho tích vừa tìm được ta được dư thứ nhất.

\[\begin{array}{*{20}{l}}
{2{x^5} + 3{x^3} + x}\\
{\underline {2{x^5} + {x^3}\,\,\,\,\,\,\,\,\,\,\,} }\\
{\,\,\,\,\,\,\,\,\,\,\,\,2{x^3} + x}\\
{}\\
{}
\end{array}\left| {\begin{array}{*{20}{c}}
{2{x^2} + 1}\\
\hline
{{x^3}}\\
{}\\
{}\\
{}
\end{array}} \right.\]

Lấy hạng tử lũy thừa cao nhất của dư thứ nhất chia cho hạng tử bậc cao nhất của đa thức chia ta được:

\[2{x^3}:2{x^2} = x\]

Thực hiện lại như bước trên ta được:

\[\begin{array}{*{20}{l}}
{2{x^5} + 3{x^3} + x}\\
{\underline {2{x^5} + {x^3}\,\,\,\,\,\,\,\,\,\,\,} }\\
{\,\,\,\,\,\,\,\,\,\,\,\,2{x^3} + x}\\
{\,\,\,\,\,\,\,\,\,\,\,\,\underline {2{x^3} + x} }\\
{\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,0}
\end{array}\left| {\begin{array}{*{20}{c}}
{2{x^2} + 1}\\
\hline
{{x^3} + x}\\
{}\\
{}\\
{}
\end{array}} \right.\]

Vì phần dư là 0 nên phép chia trên là phép chia hết.

Vậy kết quả của phép chia \((2{x^5} + 3{x^3} + x):(2{x^2} + 1)\) là \[{x^3} + x\];

Lưu ý:

  • Phép chia có số dư bằng 0 là phép chia hết.
  • Nếu phép chia có phần dư khác 0 ta thực hiện theo cách trên cho đến khi lũy thừa cao nhất của phần dư nhỏ hơn lũy thừa cao nhất của đa thức chia.

 

Bài tập minh họa

 
 

Bài 1 

Sắp xếp theo lũy thừa giảm dần của biến rồi thực hiện phép chia 

\(\left( {x + 1 + 2{x^3} + {x^2}} \right):\left( {x - 1} \right)\)

Hướng dẫn:

Sắp xếp theo lùy thừa giảm dần của biến ta được \(2{x^3} + {x^2} + x + 1\) 

Thực hiện phép chia ta được

Bài 2: Thực hiện phép chia sau và xác định thương và phần dư

\(\left( {2{x^3} - 3{x^2} + 6x - 4\,\,} \right):\,\,\left( {{x^2} - x + 3\,\,} \right)\,\)

 

Vậy ta tìm được thương là \(2x-1\) và phần dư là \(-x-1\)

Bài 3

Tìm giá trị nguyên của n để A chia hết cho B biết


\(A = 2{x^4} - {x^3} - {x^2} - x + n\,\,\,\,\,B = {x^2} + 1\)

Hướng dẫn:

 Thực hiện phép chia ta được

A chia hết cho B \( \Leftrightarrow n - 3 = 0 \Leftrightarrow n = 3\)

Vậy giá trị cần tìm là n = 3

3. Luyện tập Bài 12 Toán 8 tập 1

Qua bài giảng Chia đa thức một biến đã sắp xếp này, các em cần hoàn thành 1 số mục tiêu mà bài đưa ra như : 

  • Biết sắp xếp đa thức tgiarmluyx thừa tăng dần ( giảm dần ) của bi
  • Thực hiện được phép chia đa thức
  • Vận dụng được chia đa thức để giải các bài toán liên quan

3.1 Trắc nghiệm về Chia đa thức một biến đã sắp xếp

Các em có thể hệ thống lại nội dung kiến thức đã học được thông qua bài kiểm tra Trắc nghiệm Toán 8 Bài 12 cực hay có đáp án và lời giải chi tiết. 

Câu 2- Câu 5: Xem thêm phần trắc nghiệm để làm thử Online 

3.2. Bài tập SGK về Chia đa thức một biến đã sắp xếp

Các em có thể xem thêm phần hướng dẫn Giải bài tập Toán 8 Bài 12 để giúp các em nắm vững bài học và các phương pháp giải bài tập.

Bài tập 67 trang 31 SGK Toán 8 Tập 1

Bài tập 68 trang 31 SGK Toán 8 Tập 1

Bài tập 69 trang 31 SGK Toán 8 Tập 1

Bài tập 70 trang 32 SGK Toán 8 Tập 1

Bài tập 71 trang 32 SGK Toán 8 Tập 1

Bài tập 72 trang 32 SGK Toán 8 Tập 1

Bài tập 73 trang 32 SGK Toán 8 Tập 1

Bài tập 74 trang 32 SGK Toán 8 Tập 1

4. Hỏi đáp Bài 12 Chương 1 Đại số 8 tập 1

Trong quá trình học tập nếu có thắc mắc hay cần trợ giúp gì thì các em hãy comment ở mục Hỏi đáp, Cộng đồng Toán Chúng tôi sẽ hỗ trợ cho các em một cách nhanh chóng!

Chúc các em học tập tốt và luôn đạt thành tích cao trong học tập!

Tham khảo thêm

Bình luận

Có Thể Bạn Quan Tâm ?