10 Bài Toán bồi dưỡng HSG 9 và Luyện thi lên lớp 10 Chuyên (Chuyên đề: Số học)

10 Bài Toán bồi dưỡng HSG 9 và Luyện thi lên lớp 10 Chuyên
(Chuyên đề: Số học)

 

Câu 1: Tìm nghiệm nguyên của phương trình: 2x2+4x+3y219=0  

Câu 2: Cho a, b là các số nguyên dương thỏa mãn a+1b+2019 đều chia hết cho 6. Chứng minh rằng 4a  + a + b chia hết cho 6.

Câu 3: Có bao nhiêu số nguyên dương có 5 chữ số abcde sao cho abc=(10d+e) chia hết cho 101?

Câu 4: (PHNK- ĐHQG Tp Hồ Chí Minh 2013-2014)
Cho M=a2+3a+1 với a là số nguyên dương.
a) Chứng minh mọi ước số của M đều là số lẻ.
b) Giả sử M chia hết cho 5, tìm a. Với giá trị nào của a thì M là lũy thừa của 5?

Câu 5: Cho x, y, z là các số tự nhiên thỏa x2+y2=z2. Chứng minh rằng xyz chia hết cho 60.

Câu 6: (KHTN- ĐHQG Hà Nội 2013-2014)
Tìm cặp số nguyên (x, y) thỏa mãn: 5x2+8y2=20412

Câu 7: Cho Sn=1.2+2.3+3.4+...+n(n+1);(nN)
Chứng minh rằng 3.Sn.(n+3)+1 là một số chính phương

Câu 8: Giải hệ phương trình nghiệm nguyên sau:
{x+y=zx3+y3=z2

Câu 9: Tìm nghiệm nguyên của phương trình: x23y2+2xy2x10y+4=0.

Câu 10: Chứng minh tổng S=1+2+22+...+22018+22019 chia hết cho 31.


Hướng dẫn giải 10 Bài Toán bồi dưỡng HSG 9 và Luyện thi lên lớp 10 Chuyên:

Câu 1:
Theo đề x,yZ nên:
2x2+4x+3y219=0
2x2+4x+2+3y2=21
2(x+1)2+3y2=21
x,yZ nên 3y221y27|y|2
[y=±22(x+1)2=9(l)y=02(x+1)2=21(l)y=±12(x+1)2=18[x=2x=4
Vậy cặp nghiệm (x;y){(2;1),(2;1),(4;1),(4;1)}

Câu 2:
(a+1)6,aNa5
Từ giả thiết a+16;b+20196a+b+2020=(a+b+4+336.6)6.
Vậy ta chỉ cần chứng minh (4a4)6
Mặc khác: 4a4=4(4a11)=4(4a41)(4511)=2553
Vậy 4a  + a + b chia hết cho 6.

 

Trên đây là một phần trích dẫn 10 Bài Toán bồi dưỡng HSG 9 và Luyện thi lên lớp 10 Chuyên (Chuyên đề: Số học). Để xem đầy đủ nội dung và đáp án chi tiết các em vui lòng đăng nhập website Chúng tôi.Net chọn xem Online hoặc tải về máy tính. Chúc các em đạt kết quả tốt.

Tham khảo thêm

Bình luận

Thảo luận về Bài viết

Có Thể Bạn Quan Tâm ?