1. Phương pháp giải
Tìm điều kiện để hàm số \(y=f(x)=a{{x}^{3}}+b{{x}^{2}}+cx+d\) đơn điệu trên khoảng \((\alpha ;\beta )\).
Hàm số đã cho xác định \(D=\mathbb{R}\)
Ta có: \({y}'={f}'(x)=3a{{x}^{2}}+2bx+c\).
1. Hàm số f đồng biến trên \((\alpha ;\beta )\) ⇔ \({y}'\ge 0,\,\forall x\in (\alpha ;\beta )\) và \({y}'=0\) chỉ xảy ra tại một số hữu hạn điểm thuộc \((\alpha ;\beta )\).
Trường hợp 1:
· Nếu bất phương trình \({f}'(x)\ge 0\Leftrightarrow h(m)\ge g(x)\) (*) thì f đồng biến trên \((\alpha ;\beta )\) ⇔ \(h(m)\ge \underset{(\alpha ;\beta )}{\mathop{\max }}\,g(x)\)
· Nếu bất phương trình \({f}'(x)\ge 0\Leftrightarrow h(m)\le g(x)\) (**) thì f đồng biến trên \((\alpha ;\beta )\) ⇔ \(h(m)\le \underset{(\alpha ;\beta )}{\mathop{\min }}\,g(x)\)
Trường hợp 2: Nếu bất phương trình \({f}'(x)\ge 0\) không đưa được về dạng (*) thì đặt \(t=x-\alpha \). Khi đó ta có: \({y}'=g(t)=3a{{t}^{2}}+2(3a\alpha +b)t+3a{{\alpha }^{2}}+2b\alpha +c\).
– Hàm số f đồng biến trên khoảng \(( - \infty ;a) \Leftrightarrow g(t) \ge 0,\,\forall t < 0 \Leftrightarrow \left\{ \begin{array}{l} a > 0\\ \Delta \le 0 \end{array} \right.\) hoặc \(\,\left\{ \begin{array}{l} a > 0\\ \Delta > 0\\ S > 0\\ P \ge 0 \end{array} \right.\)
– Hàm số f đồng biến trên khoảng \((a; + \infty ) \Leftrightarrow g(t) \ge 0,\,\forall t > 0 \Leftrightarrow \left\{ \begin{array}{l} a > 0\\ \Delta \le 0 \end{array} \right.\) hoặc \(\left\{ \begin{array}{l} a > 0\\ \Delta > 0\\ S < 0\\ P \ge 0 \end{array} \right.\)
2. Hàm số f nghịch biến trên \((\alpha ;\beta )\) ⇔ \({y}'\ge 0,\,\forall x\in (\alpha ;\beta )\) và \({y}'=0\) chỉ xảy ra tại một số hữu hạn điểm thuộc \((\alpha ;\beta )\).
Trường hợp 1:
· Nếu bất phương trình \({f}'(x)\le 0\Leftrightarrow h(m)\ge g(x)\) (*) thì f nghịch biến trên \((\alpha ;\beta )\) ⇔ \(h(m)\ge \underset{(\alpha ;\beta )}{\mathop{\max }}\,g(x)\)
· Nếu bất phương trình \({f}'(x)\ge 0\Leftrightarrow h(m)\le g(x)\) (**) thì f nghịch biến trên \((\alpha ;\beta )\) ⇔ \(h(m)\le \underset{(\alpha ;\beta )}{\mathop{\min }}\,g(x)\)
Trường hợp 2: Nếu bất phương trình \({f}'(x)\le 0\) không đưa được về dạng (*) thì đặt \(t=x-\alpha \). Khi đó ta có: \({y}'=g(t)=3a{{t}^{2}}+2(3a\alpha +b)t+3a{{\alpha }^{2}}+2b\alpha +c\).
– Hàm số f nghịch biến trên khoảng \(( - \infty ;a) \Leftrightarrow g(t) \le 0,\,\forall t < 0 \Leftrightarrow \left\{ \begin{array}{l} a < 0\\ \Delta \le 0 \end{array} \right.\) hoặc \(\left\{ \begin{array}{l} a < 0\\ \Delta > 0\\ S > 0\\ P \ge 0 \end{array} \right.\)
– Hàm số f nghịch biến trên khoảng \((a; + \infty ) \Leftrightarrow g(t) \le 0,\,\forall t > 0 \Leftrightarrow \left\{ \begin{array}{l} a < 0\\ \Delta \le 0 \end{array} \right.\) hoặc \(\left\{ \begin{array}{l} a < 0\\ \Delta > 0\\ S < 0\\ P \ge 0 \end{array} \right.\)
Chú ý:
1. Phương trình \({\rm{f}}\left( {\rm{x}} \right) = {\rm{a}}{{\rm{x}}^{\rm{2}}} + {\rm{bx}} + {\rm{c}} = 0\) (a khác 0) có hai nghiệm \({{\rm{x}}_{\rm{1}}},{\rm{ }}{{\rm{x}}_{\rm{2}}}\) thỏa
\({x_1} < 0 < {x_2} \Leftrightarrow P < 0\)
\({x_1} \le 0 \le {x_2} \Leftrightarrow P \le 0\)
\(0 \le {x_1} < {x_2} \Leftrightarrow \left\{ \begin{array}{l} \Delta > 0\\ P \ge 0\\ S > 0 \end{array} \right.\,\,\)
\({x_1} < {x_2} \le 0 \Leftrightarrow \left\{ \begin{array}{l} \Delta > 0\\ P \ge 0\\ S < 0 \end{array} \right.\,\)
\(\left[ \begin{array}{l} 0 < {x_1} < {x_2}\\ {x_1} < {x_2} < 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} \Delta > 0\\ P > 0 \end{array} \right.\)
Trong đó : \(S = {x_1} + {x_2} = - \frac{b}{a}\,\,\,\,,\,\,\,\,P = {x_1}.{x_2} = \frac{c}{a}\).
2. Nếu hàm số f(x) có giá trị nhỏ nhất trên tập D ,thế thì:
\(\forall x \in D,f(x) \ge 0 \Leftrightarrow \mathop {\min }\limits_{x \in D} f(x) \ge 0\).
3. Nếu hàm số f(x) có giá trị lớn nhất trên tập D, thế thì
\(\forall x \in D,f(x) \le 0 \Leftrightarrow \mathop {\max }\limits_{x \in D} f(x) \le 0\).
4. Cho hàm số y = f(x) liên tục trên D
* \(f(x) \ge k{\rm{ }}\forall x \in D \Leftrightarrow \mathop {\min }\limits_D f(x) \ge k\) ( nếu tồn tại \(\mathop {\min }\limits_D f(x)\))
* \(f(x) \le k{\rm{ }}\forall x \in D \Leftrightarrow \mathop {\max }\limits_D f(x) \le k\) ( nếu tồn tại \(\mathop {\max }\limits_D f(x)\)).
Ví dụ : Định m để hàm số \(y={{x}^{3}}+3{{x}^{2}}+(m-1)x+4m\) nghịch biến trong \(\left( -\text{ 1};\text{1} \right)\) |
Lời giải.
Hàm số đã cho xác định \(D=\mathbb{R}\)
Ta có: \(y'=3{{x}^{2}}+6x+m-1\)
Cách 1: Hàm số nghịch biến trong khoảng \(\left( -\text{ 1};\text{1} \right) \Leftrightarrow y'\le 0\) và \({{x}_{1}}<-1<1<{{x}_{2}}\)
\(\Leftrightarrow \left\{ \begin{array}{l} \left( {{x_1} + 1} \right)\left( {{x_2} + 1} \right) < 0\\ \left( {{x_1} - 1} \right)\left( {{x_2} - 1} \right) < 0 \end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l} m < 4\\ m < - 8 \end{array} \right.\) \( \Rightarrow m < - 8\)
Vậy, với m<-8 thì hàm số luôn nghịch biến trong khoảng \(\left( -\text{ 1};\text{1} \right)\)
Cách 2: Hàm số nghịch biến trong khoảng \(\left( -\text{ 1};\text{1} \right) \Leftrightarrow y'\le 0,\forall x\in \left( -\text{ 1};\text{1} \right)\) tức là phải có: \(m\ge -3{{x}^{2}}-6x+1\), \(\forall x\in \left( -\text{ 1};\text{1} \right)\)
Xét hàm số \(g\left( x \right)=-3{{x}^{2}}-6x+1,\forall x\in \left( -\text{ 1};\text{1} \right)\) và có \(g'\left( x \right)=-6\left( x+1 \right)\)
Với \(\forall x\in \left( -\text{ 1};\text{1} \right)\Rightarrow x+1>0\Rightarrow g'(x)<0,\forall x\in \left( -\text{ 1};\text{1} \right)\)
Dựa vào bảng biến thiên, suy ra: \(m\ge g(x)\) với \(\forall x\in \left( -\text{ 1};\text{1} \right) \Leftrightarrow m<-8\)
Vậy, với m<-8 thì hàm số luôn nghịch biến trong khoảng \(\left( -\text{ 1};\text{1} \right)\)
2. Bài tập
Bài 1: Định m để hàm số \(y={{x}^{4}}-2m{{x}^{2}}-3m+1\) đồng biến trên khoảng (1; 2).
Bài 2: Định m để hàm số \(y={{x}^{3}}-(m+2){{x}^{2}}+(3m+2)x+2\) đồng biến trên đoạn \(\left[ \text{3};\text{4} \right]\)
Bài 3: Tìm m để hàm số \(y=\frac{1}{3}{{x}^{3}}+\left( 2m-1 \right){{x}^{2}}+mx+2\) nghịch biến trên khoảng \(\left( 0;1 \right)\)
Bài 4: Tìm m để hàm số \(y=\frac{{{x}^{3}}}{3}-(m+1){{x}^{2}}+(2m+1)x+m\) nghịch biến trên (0;3).
Bài 5: Tìm m để hàm số \(y={{x}^{3}}+3{{x}^{2}}-3({{m}^{2}}-1)x+1\) đồng biến trên (1;2).
Bài 6: Tìm m để hàm số \(\text{y}={{\text{x}}^{\text{3}}}\text{3}{{\text{x}}^{\text{2}}}+\left( \text{2m}+\text{1} \right)\text{x}\text{4}.\) biến trên [-2;-1]
Bài 7: Tìm m để hàm số \(y={{x}^{3}}+3{{x}^{2}}+\left( m+1 \right)x+4m\) nghịch biến trên khoảng \(\left( -1;1 \right)\)
Bài 8: Tìm m để hàm số \(y=m{{x}^{3}}-{{x}^{2}}+3x+m-2\) đồng biến trên khoảng \(\left( -3;0 \right)\).
HƯỚNG DẪN GIẢI
Bài 1:
+ \(m\le 0, y{{\,}^{\prime }}\ge 0,\forall x\in (0;+\infty )\) ⇒ \(m\le 0\) thoả mãn.
+ m>0, \(y{{\,}^{\prime }}=0\) có 3 nghiệm phân biệt: \(-\sqrt{m},\text{ }0,\text{ }\sqrt{m}\)
Hàm số cho đồng biến trên (1; 2) ⇔ \(\sqrt{m}\le 1\text{ }\Leftrightarrow 0
Vậy \(m\in \left( -\infty ;1 \right]\).
Bài 2:
\(\forall x\in [3;4]\,,3{{x}^{2}}-2(m+2)x+3m+2\ge 0 \Leftrightarrow \forall x\in [3;4]\,,3{{x}^{2}}-4x+2\ge m(2x-3)\)
\(\Leftrightarrow \forall x\in [3;4]\,,\,\frac{3{{x}^{2}}-4x+2}{2x-3}\ge m\). Xét \(\text{g}\left( \text{x} \right)=\frac{3{{x}^{2}}-4x+2}{2x-3}\,\,,\,\,x\in [3;4]\).
\(g'(x)=\frac{6{{x}^{2}}-18x+8}{{{(2x-3)}^{2}}}=\frac{2[3x(x-3)+4]}{{{(2x-3)}^{2}}}>0\) với mọi x thuộc đoạn \(\left[ \text{3};\text{4} \right]\)
⇒ \(\text{g}\left( \text{x} \right)\) đồng biến trên đoạn \(\left[ \text{3};\text{4} \right] \Rightarrow \underset{x\in [3;4]}{\mathop{\min }}\,g(x)=g(3)=\frac{17}{3}\)
...
--(Nội dung đầy đủ, chi tiết của phần đáp án vui lòng xem tại online hoặc đăng nhập để tải về máy)---
Trên đây là một phần trích đoạn nội dung Phương pháp giải bài tóan tìm m để hàm số đồng biến nghịch biến trên khoảng xác định \(\left( {\alpha ;\beta } \right)\), \(\left[ {\alpha ;\beta } \right]\). Để xem thêm nhiều tài liệu tham khảo hữu ích khác các em chọn chức năng xem online hoặc đăng nhập vào trang Chúng tôi để tải tài liệu về máy tính.
Hy vọng tài liệu này sẽ giúp các em học sinh ôn tập tốt và đạt thành tích cao trong học tập.
Các em quan tâm có thể tham khảo thêm các tài liệu cùng chuyên mục:
- Phương pháp giải bài toán tìm m để hàm số đồng biến, nghịch biến trên tập xác định
- Phương pháp giải bài toán tìm m để hàm số đồng biến, nghịch biến trên khoảng , ,
Chúc các em học tập tốt!