Lý thuyết và bài tập về Số phức Toán 12

1. Kiến thức cần nhớ

a) Số phức

- Số phức \(z\) là một biểu thức có dạng \(z = a + bi\) trong đó \(a,b\) là những số thực và thỏa mãn \({i^2} =  - 1\). Trong đó, \(a\) là phần thực, \(b\) là phần ảo, \(i\) là đơn vị ảo.

- Tập hợp các số phức kí hiệu là \(C\).

- Số phức \(z\) là số thực nếu \(b = 0 \Rightarrow z = a\), là số ảo nếu \(a = 0 \Rightarrow z = bi\).

- Hai số phức \(z = a + bi,z' = a' + b'i\) bằng nhau nếu \(\left\{ \begin{array}{l}a = a'\\b = b'\end{array} \right.\).

- Số phức liên hợp của số phức \(z = a + bi\) là \(\overline z  = a - bi\).

- Mô đun của số phức \(z = a + bi\) là \(\left| z \right| = \sqrt {{a^2} + {b^2}} \)

+) \(\left| z \right| = \left| {\overline z } \right|\)

+) \(\left| {z.z'} \right| = \left| z \right|.\left| {z'} \right|\)

+) \(\left| {\dfrac{z}{{z'}}} \right| = \dfrac{{\left| z \right|}}{{\left| {z'} \right|}}\)

- Biểu diễn hình học số phức: Điểm \(M\left( {a;b} \right)\) trên mặt phẳng tọa độ \(Oxy\) biểu diễn số phức \(z = a + bi\)

b) Các phép toán trên tập số phức

Cho hai số phức \(z = a + bi,z' = a' + b'i\), khi đó:

+) \(z \pm z' = \left( {a + bi} \right) \pm \left( {a' + b'i} \right) \) \(= \left( {a \pm a'} \right) + \left( {b \pm b'} \right)i\)

+) \(z.z' = \left( {a + bi} \right)\left( {a' + b'i} \right) \) \(= \left( {aa' - bb'} \right) + \left( {ab' + a'b} \right)i\)

+) \(\dfrac{z}{{z'}} = \dfrac{{z.\overline {z'} }}{{z'.\overline {z'} }} = \dfrac{{z.\overline {z'} }}{{{{\left| {z'} \right|}^2}}}\)

2. Một số dạng toán thường gặp

Dạng 1: Tìm phần thực, phần ảo, mô đun, … của số phức.

Phương pháp:

Sử dụng các định nghĩa phần thực, phần ảo, mô đun,…của số phức để nhận xét.

Dạng 2: Rút gọn biểu thức.

Phương pháp:

Sử dụng các phép tính cộng, trừ, nhân, chia, lũy thừa,… để rút gọn biểu thức đã cho.

3. Bài tập

Bài 1: Cho hai số phức \({{z}_{1}},{{z}_{2}}\) thảo mãn \(\left| {{z}_{1}} \right|=\left| {{z}_{2}} \right|=1;\left| {{z}_{1}}+{{z}_{2}} \right|=\sqrt{3}.\) Tính \(\left| {{z}_{1}}+{{z}_{2}} \right|\)

A. 1

B. 2

C. 3

D. 4

Nhận xét: Bài này nhìn vào có vẻ khá khó, nhưng các em cần phải bình tĩnh, chỉ cần gọi \({{z}_{1}}={{a}_{1}}+{{b}_{1}}i;{{z}_{2}}={{a}_{2}}+{{b}_{2}}i\,\,\,\left( {{a}_{1}},{{a}_{2}},{{b}_{1}},{{b}_{2}}\in \mathbb{R} \right)\) sau đó viết hết các giả thiết đề bài cho:

\(\left\{ \begin{align} & \left| {{z}_{1}} \right|=\left| {{z}_{2}} \right|=1 \\ & \left| {{z}_{1}}+{{z}_{2}} \right|=\sqrt{3} \\ \end{align} \right.\)

\(\Rightarrow \left\{ \begin{align} & {{a}_{1}}^{2}+b_{1}^{2}={{a}_{2}}^{2}+b_{2}^{2}=1 \\ & {{\left( {{a}_{1}}+{{a}_{2}} \right)}^{2}}+{{\left( {{b}_{1}}+{{b}_{2}} \right)}^{2}}=3 \\ \end{align} \right.\)

Và viết cái cần tính ra \({{\left| {{z}_{1}}-{{z}_{2}} \right|}^{2}}={{\left( {{a}_{1}}-{{a}_{2}} \right)}^{2}}+{{\left( {{b}_{1}}-{{b}_{2}} \right)}^{2}}\). Hãy quan sát cái cần tính và thấy rằng chỉ cần bình phương lên là có thể dùng được giả thiết.

Lời giải

Ta có: \({{z}_{1}}={{a}_{1}}+{{b}_{1}}i;{{z}_{2}}={{a}_{2}}+{{b}_{2}}i\,\,\,\left( {{a}_{1}},{{a}_{2}},{{b}_{1}},{{b}_{2}}\in \mathbb{R} \right)\)

\(\left\{ \begin{align} & \left| {{z}_{1}} \right|=\left| {{z}_{2}} \right|=1 \\ & \left| {{z}_{1}}+{{z}_{2}} \right|=\sqrt{3} \\ \end{align} \right.\)

\(\Rightarrow \left\{ \begin{align} & {{a}_{1}}^{2}+b_{1}^{2}={{a}_{2}}^{2}+b_{2}^{2}=1 \\ & {{\left( {{a}_{1}}+{{a}_{2}} \right)}^{2}}+{{\left( {{b}_{1}}+{{b}_{2}} \right)}^{2}}=3 \\ \end{align} \right.\)

\(\Rightarrow 2\left( {{a}_{1}}{{b}_{1}}+{{a}_{2}}{{b}_{2}} \right)=1\)

\(\Rightarrow {{\left( {{a}_{1}}-{{a}_{2}} \right)}^{2}}+{{\left( {{b}_{1}}-{{b}_{2}} \right)}^{2}}=1\)

Vậy: \({{\left| {{z}_{1}}-{{z}_{2}} \right|}^{2}}={{\left( {{a}_{1}}-{{a}_{2}} \right)}^{2}}+{{\left( {{b}_{1}}-{{b}_{2}} \right)}^{2}}=1.\)

Chọn A.

Bài 2: Tính \(z=i+{{i}^{2}}+{{i}^{3}}+...+{{i}^{2008}}\) có kết quả:

A. 0

B. 1

C. -i

D. i

Lời giải

Ta có \(iz={{i}^{2}}+{{i}^{3}}+...+{{i}^{2008}}+{{i}^{2009}}$ và $z=i+{{i}^{2}}+{{i}^{3}}+...+{{i}^{2008}}.\)

Suy ra \(z\left( i-1 \right)={{i}^{2009}}-i=i\left( {{i}^{2008}}-1 \right)=0\Rightarrow z=0\)

Chọn A.

Bài 3: Cho z là số phức có mô đun bằng 2017 và \(\text{w}\) là số phức thỏa mãn \(\frac{1}{z}+\frac{1}{\text{w}}=\frac{1}{z+\text{w}}.\) Mô đun của số phức z là:

A. 2015

B. 1

C. 2017

D. 0

Lời giải

Từ \(\frac{1}{z}+\frac{1}{\text{w}}=\frac{1}{z+\text{w}}$ ta suy ra ${{z}^{2}}+{{\text{w}}^{2}}+z\text{w}=0\)

\(\Rightarrow {{\left( z+\frac{\text{w}}{2} \right)}^{2}}={{\left( \frac{i\sqrt{3}\text{w}}{2} \right)}^{2}}\Rightarrow z=\left( -\frac{1}{2}\pm \frac{i\sqrt{3}}{2} \right)\text{w}\)

Lấy mô đun hai vế ta có \(\left| z \right|=\left| \text{w} \right|=2017.\)

Chọn C.

Bài 4: Tìm phần thực của số phức \(z={{\left( 1+i \right)}^{n}},n\in \mathbb{N}\) thỏa mãn phương trình:

\({{\log }_{4}}\left( n-3 \right)+{{\log }_{4}}\left( n+9 \right)=3\)

A. 5

B. 6

C. 7

D. 8

Lời giải                        

Điều kiện \(n>3,n\in \mathbb{N}\)

Phương trình: \({{\log }_{4}}\left( n-3 \right)+{{\log }_{4}}\left( n+9 \right)=3\Leftrightarrow {{\log }_{4}}\left( n-3 \right)\left( n+9 \right)=3\Leftrightarrow n=7\) (so đk)

\(z={{\left( 1+i \right)}^{7}}=\left( 1+i \right){{\left[ {{\left( 1+i \right)}^{2}} \right]}^{3}}=\left( 1+i \right){{\left( 2i \right)}^{3}}=8-8i\)

Vậy phần thực của số phức z là 8.

Chọn D.

Bài 5: Cho số phức z thỏa mãn \(\frac{5\left( \overline{z}+i \right)}{z+1}=2-i\,\left( 1 \right)\)

Tính mô đun của số phức \(\omega =1+z+{{z}^{2}}.\)

A. \(\sqrt{13}\)

B. \(\sqrt{15}\)

C. \(\sqrt{17}\)

D. \(\sqrt{19}\)

Lời giải

Giả sử z=a+bi

\( \left( 1 \right)\Leftrightarrow \frac{5\left( a-bi+i \right)}{a+bi+1}=2-i\Leftrightarrow 5a-5i\left( b-1 \right)=2a+2bi+2-ai-b{{i}^{2}}-i \\ \Leftrightarrow 3a-2-b-i\left( 5b-5-2b+a+1 \right)=0\)

\(\Leftrightarrow \left\{ \begin{align} & 3a-2-b=0 \\ & 3b+a-4=0 \\ \end{align} \right.\)

\(\Rightarrow \left\{ \begin{align} & a=1 \\ & b=1 \\ \end{align} \right.\)

⇒ z=1+i 

\(\omega =1+1+i+1+2i-1=2+3i\Rightarrow \left| \omega  \right|=\sqrt{4+9}=\sqrt{13}\)

Chọn A.

...

--(Nội dung đầy đủ, chi tiết vui lòng xem tại online hoặc đăng nhập để tải về máy)---

 

Trên đây là một phần trích đoạn nội dung Lý thuyết và bài tập về Số phức Toán 12. Để xem thêm nhiều tài liệu tham khảo hữu ích khác các em chọn chức năng xem online hoặc đăng nhập vào trang Chúng tôi để tải tài liệu về máy tính.

Hy vọng tài liệu này sẽ giúp các em học sinh ôn tập tốt và đạt thành tích cao trong học tập.

Chúc các em học tập tốt!

Tham khảo thêm

Bình luận

Có Thể Bạn Quan Tâm ?