Giải Toán 11 SGK nâng cao Chương 4 Bài 1 Dãy số có giới hạn 0

Bài 1 trang 130 SGK Toán 11 nâng cao

Chứng minh rằng các dãy số với số hạng tổng quát sau đây có giới hạn 0:

a) (1)nn+5

b) sinnn+5

c) cos2nn+1

Hướng dẫn giải:

Câu a:

Ta có |(1)nn+5|=1n+5<1nlim1n=0lim(1)nn+5=0

Câu b:

Ta có |sinnn+5|1n+5<1nlim1n=0limsinnn+5=0

Câu c:

Ta có |cos2nn+1|1n+1<1nlim1n=0limcos2nn+1=0


Bài 2 trang 130 SGK Toán 11 nâng cao

Chứng minh rằng hai dãy số (un) và (vn) với

un=1n(n+1),vn=(1)ncosnn2+1

Có giới hạn 0.

Hướng dẫn giải:

Ta có |un|=1n(n+1)<1n và lim1n=0limun=0

|vn|=|(1)ncosnn2+1|=|cosn|n2+11n2+1<1n2 và lim1n2=0limvn=0


Bài 3 trang 130 SGK Toán 11 nâng cao

Chứng minh rằng các dãy số (un) sau đây có giới hạn 0:

a) un=(0,99)n

b) un=(1)n2n+1

c) un=sinnπ5(1,01)n

Hướng dẫn giải:

Câu a:

Ta có |0,99|<1limun=lim(0,99)n=0

Câu b:

Ta có |un|=|(1)n2n+1|=12n+1<(12)n và lim(12)n=0limun=0

Câu c:

Ta có |un|=|sinnπ5(1,01)n|=|sinnπ5|(1,01)n(11,01)n,lim(11,01)n=0limun=0


Bài 4 trang 130 SGK Toán 11 nâng cao

Cho dãy số (un) với un=n3n

a. Chứng minh rằng un+1un23 với mọi n.

b. Bằng phương pháp qui nạp, chứng minh rằng 0<un(23)n với mọi n.

c. Chứng minh rằng dãy số (un) có giới hạn 0.

Hướng dẫn giải:

Câu a:

Ta có un+1un=n+13n+1:n3n=13.n+1n=13.(1+1n)23,n1

Câu b:

Rõ ràng un>0,n1.

Ta chứng minh un(23)n(1)

  • Với n = 1 ta có u1=1323

Vậy (1) đúng với n = 1

  • Giả sử (1) đúng với n = k, tức là ta có uk(23)k

Khi đó uk+123uk (theo câu a)

uk+123.(23)k=(23)k+1

Vậy (1) đúng với n = k+1 nên (1) đúng với mọi n.

Câu c:

Ta có 0<un(23)n|un|(23)n

lim(23)n=0lim|un|=0limun=0

 

Trên đây là nội dung chi tiết Giải bài tập nâng cao Toán 11 Chương 4 Bài 1 Dãy số có giới hạn 0 với hướng dẫn giải chi tiết, rõ ràng, trình bày khoa học. Chúng tôi hy vọng đây sẽ là tài liệu hữu ích giúp các bạn học sinh lớp 11 học tập thật tốt. 

Tham khảo thêm

Bình luận

Thảo luận về Bài viết

Có Thể Bạn Quan Tâm ?