Chuyên đề
BẤT PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN
I. Kiến thức cần nhớ
1. Định nghĩa
Bất phương trình dạng ax + b < 0 (hoặc ax + b > 0, ax + b < 0, ax + b ≤ 0, ax + b ≥ 0 ) trong đó a và b là hai số đã cho, a\(\ne 0\), được gọi là bất phương trình bậc nhất một ẩn.
Ví dụ:
Các bất phương trình bậc nhất một ẩn như: 2x + 3 > 0; 3 - x ≤ 0; x + 2 < 0; 4x + 7 ≥ 0; ...
2. Hai quy tắc biến đổi bất phương trình
a) Quy tắc chuyển vế
Khi chuyển một hạng tử của bất phương trình từ vế này sang vế kia ta đổi dấu hạng tử đó.
Ví dụ: Giải bất phương trình x - 3 < 4.
Hướng dẫn:
Ta có x - 3 < 4
⇔ x < 4 + 3 (chuyển vế - 3 và đổi dấu thành 3)
⇔ x < 7.
Vậy tập nghiệm của bất phương trình là { x| x < 7 }.
b) Quy tắc nhân với một số.
Khi nhân hai vế của bất phương trình với cùng một số khác 0, ta phải:
Giữ nguyên chiều bất phương trình nếu số đó dương.
Đổi chiều bất phương trình nếu số đó âm.
Ví dụ 1: Giải bất phương trình (x - 1)/3 ≥ 2.
Hướng dẫn:
Ta có: (x - 1)/3 ≥ 2
⇔ (x - 1)/3.3 ≥ 2.3 (nhân cả hai vế với 3)
⇔ x - 1 ≥ 6 ⇔ x ≥ 7.
Vậy tập nghiệm của bất phương trình là { x| x ≥ 7 }.
Ví dụ 2: Giải bất phương trình 1 - 2/3x ≤ - 1.
Hướng dẫn:
Ta có: 1 - 2/3x ≤ - 1 ⇔ - 2/3x ≤ - 2
⇔ - 2/3x.( - 3 ) ≥ ( - 2 )( - 3 ) (nhân cả hai vế với - 3 và đổi chiều)
⇔ 2x ≥ 6 ⇔ x ≥ 3.
Vậy bất phương trình có tập nghiệm là { x| x ≥ 3 }.
3. Giải bất phương trình một ẩn
Áp dụng hai quy tắc biến đổi trên, ta giải bất phương trình bậc nhất một ẩn như sau:
Dạng ax + b > 0 ⇔ ax > - b
⇔ x > - b/a nếu a > 0 hoặc x < - b/a nếu a < 0.
Vậy bất phương trình có tập nghiệm là
hoặc
Các dạng toán như ax + b < 0, ax + b ≤ 0, ax + b ≥ 0 tương tự như trên
Ví dụ 1: Giải bất phương trình 2x - 3 > 0
Hướng dẫn:
Ta có: 2x - 3 > 0
⇔ 2x > 3 (chuyển - 3 sang VP và đổi dấu)
⇔ 2x:2 > 3:2 (chia cả hai vế cho 2)
⇔ x > 3/2.
Vậy bất phương trình đã cho có tập nghiệm là { x| x > 3/2 }.
Ví dụ 2: Giải bất phương trình 2x - 1 ≤ 3x - 7
Hướng dẫn:
Ta có: 2x - 1 ≤ 3x - 7 ⇔ - 1 + 7 ≤ 3x - 2x
⇔ x ≥ 6.
Vậy bất phương trình đã cho có tập nghiệm là { x| x ≥ 6 }.
II. Bài tập tự luyện
1. Bài tập trắc nghiệm
Bài 1: Tập nghiệm S của bất phương trình: 5x - 1 ≥ (2x)/5 + 3 là?
A. S = R
B. x > 2
C. x < -5/2
D. x ≥ 20/23;
Hướng dẫn giải
Ta có: 5x - 1 ≥ (2x)/5 + 3 ⇔ 25x - 5 ≥ 2x + 15 ⇔ 23x ≥ 20 ⇔ x ≥ 20/23.
Vậy tập nghiệm của bất phương trình là x ≥ 20/23;
Chọn đáp án D.
Bài 2: Bất phương trình ( 2x - 1 )( x + 3 ) - 3x + 1 ≤ ( x - 1 )( x + 3 ) + x2 - 5 có tập nghiệm là?
A. x < - 2/3
B. x ≥ - 2/3
C. S = R
D. S = Ø
Hướng dẫn giải
Ta có: ( 2x - 1 )( x + 3 ) - 3x + 1 ≤ ( x - 1 )( x + 3 ) + x2 - 5
⇔ 2x2 + 5x - 3 - 3x + 1 ≤ x2 + 2x - 3 + x2 - 5 ⇔ 0x ≤ - 6
⇔ x ∈ Ø → S = Ø
Chọn đáp án D.
Bài 3: Giải bất phương trình : 2x + 4 < 16
A. x > 6
B. x < 6
C. x < 8
D. x > 8
Hướng dẫn giải
Chọn đáp án B
Bài 4: Giải bất phương trình: 8x + 4 > 2(x+ 5)
A. x > 2
B. x < -1
C. x > -1
D. x > 1
Hướng dẫn giải
Ta có: 8x + 4 > 2( x +5 )
⇔ 8x + 4 > 2x + 10
⇔ 8x – 2x > 10 - 4
⇔ 6x > 6
⇔ x > 6 : 6
⇔ x > 1
Chọn đáp án D
Bài 5: Tìm m để x = 2 là nghiệm bất phương trình: mx + 2 < x + 3 + m
A. m = 2
B. m < 3
C. m > 1
D. m < - 3
Hướng dẫn giải
Do x = 2 là nghiệm của bất phương trình đã cho nên:
⇔ 2m + 2 < 2 + 3 + m
⇔ 2m – m < 2 + 3- 2
⇔ m < 3
Chọn đáp án B
2. Bài tập tự luận
Bài 1: Tìm tập nghiệm của các bất phương trình sau:
a) ( x + √ 3 )2 ≥ ( x - √ 3 )2 + 2
b) x + √ x < ( 2√ x + 3 )( √ x - 1 )
c) (x - 3)√(x - 2) ≥ 0
Hướng dẫn:
a) Ta có: ( x + √ 3 )2 ≥ ( x - √ 3 )2 + 2
⇔ x2 + 2√ 3 x + 3 ≥ x2 - 2√ 3 x + 3 + 2
⇔ 4√3x ≥ 2 ⇔ x ≥ √3/6
Vậy bất phương trình đã cho có tập nghiệm là S = [ √ 3 /6; + ∞ )
b) Ta có: x + √ x < ( 2√ x + 3 )( √ x - 1 )
Điều kiện: x ≥ 0
⇔ x + √ x < 2x - 2√ x + 3√ x - 3
⇔ - x < - 3 ⇔ x > 3
Kết hợp điều kiện, tập nghiệm bất phương trình là: x > 3
Vậy bất phương trình đã cho có tập nghiệm là x > 3
c) Ta có: (x - 3)√(x - 2) ≥ 0
Điều kiện: x ≥ 2
Bất phương trình tương đương là
Vậy tập nghiệm của bất phương trình là x = 2 hoặc x ≥ 3
Bài 2: Có bao nhiêu giá trị thực của tham số m để bất phương trình ( m2 - m )x < m vô nghiệm là?
Hướng dẫn:
Rõ ràng nếu m2 - m ≠ 0 ⇔ thì bất phương trình luôn có nghiệm.
Với m = 0, bất phương trình trở thành 0x < 0: vô nghiệm.
Với m = 1, bất phương trình trở thành 0x < 1: luôn đúng với mọi x ∈ R
Vậy với m = 0 thì bất phương trình trên vô nghiệm.
Trên đây là nội dung tài liệu Chuyên đề Bất phương trình bậc nhất một ẩn Toán 8. Để xem thêm nhiều tài liệu tham khảo hữu ích khác các em chọn chức năng xem online hoặc đăng nhập vào trang Chúng tôi để tải tài liệu về máy tính.
Hy vọng tài liệu này sẽ giúp các em học sinh ôn tập tốt và đạt thành tích cao trong học tập.
Ngoài ra các em có thể tham khảo thêm một số tư liệu cùng chuyên mục tại đây:
- Chuyên đề nâng cao Rút gọn biểu thức bằng phương pháp khử liên tiếp Toán 8
- Chuyên đề Những hằng đẳng thức đáng nhớ Toán 8
Chúc các em học tập tốt!