Bồi dưỡng HSG môn Toán 9 Chuyên đề Căn bậc hai

ÔN THI HỌC SINH GIỎI MÔN TOÁN 9

CHUYÊN ĐỀ CĂN BẬC HAI-CĂN BẬC BA

 

A.LÝ THUYẾT

I.CĂN BẬC HAI-ĐỊNH NGHĨA VÀ KÍ HIỆU

            1.Căn bậc hai số học của một số a 0 là một số không âm x có bình phương bằng a.

Kí hiệu x= a

                                        x=a{x0x2=(a)2=a                          

            2.Số 0 cũng được gọi là căn bậc hai số học của 0

            3.Với hai số a;b không âm ta có  abab

II.CĂN THỨC BẬC HAI-ĐIỀU KIỆN TỒN TẠI-HẰNG ĐẲNG THỨC A2=|A|

            1.Điều kiện để A tồn tại là A ≥0

            2. A2=|A|={AneuA0AneuA0

III.KHAI PHƯƠNG MỘT TÍCH-NHÂN CÁC CĂN THỨC BẬC HAI

            1.Quy tắc khai phương một tích:

Nếu A0;B0A.B=A.B

            2.Quy tắc nhân các căn thức bậc hai:

Nếu A0;B0A.B=A.B

IV. KHAI PHƯƠNG MỘT THƯƠNG-CHIA CÁC CĂN THỨC BẬC HAI

            1.Quy tắc khai phương một thương:

Nếu A0;B0AB=AB

            2.Quy tắc nhân các căn thức bậc hai: :

Nếu A0;B0AB=AB

VI.BIẾN ĐỔI ĐƠN GIẢN CĂN THỨC BẬC HAI

            1.Đưa một thừa số ra ngoài dấu căn:   

A2B=|A|.B Với B ≥0

            2. Đưa một thừa số vào trong  dấu căn: 

                        Với  A0;B0:AB=A2B

                        Với  A0;B0:AB=A2B

            3.Khử mẫu biểu thức lấy căn:  

AB=AB|B|  Với AB≥ 0  và B ≠0

4.Trục căn thức ở mẫu:

a.Với B 0  ta có AmB=ABmB

b. Với A ≥ 0  ; A 1m2B2 ta có  CmA±B=C(mAB)m2AB2

c. Với A0;B0 ;A n2m2B  ta có:

CmA±nB=C(mAnB)m2An2B

VII.THỰC HIỆN PHÉP TÍNH –RÚT GỌN BIỂU THỨC CHỨA CĂN BẬC HAI

pAqA+rA+m=(p+q+r)A+m

Trong đó m,p,q,r R;AQ+

VIII.CĂN BẬC BA

...

---Xem đầy đủ nội dung ở phần xem Online hoặc tải về máy---

B.CÁC VÍ DỤ:

1. Ví dụ 1::Cho biểu thức:

A=(2x1+x1x+2xx+xx1+xx).(xx)(1x)2x11

      1. Rút gọn biểu thức A

      2. Tìm x  để A<17

Điều kiện: x0;x14;x1

Đặt x=a;a0x=a2

Ta có:

A=(2a21+a1a2+2a3+a2a1+a3).(a2a)(1a)2a11A=[(a+1)(2a1)(1a)(a+1)+a(a+1)(2a1)(a+1)(a2a+1)].a(a1)(1a)2a11A=[(2a1)(1a)+a(2a1)(a2a+1)].a(a1)(1a)2a11A=[1(1a)+a(a2a+1)].(2a1).a(a1)(1a)2a11A=1a2a+1A=1xx+1A=1xx+1<171xx+1>17xx+1<7

Doxx+1=(x12)2+34>0xx6<0(x3)(x+2)<0x3<00x<9

Đối chiếu với điều kiện ta được: {0x<9x14,x1

2.Ví dụ 2.Tính:

A=2+32+2+3+23223;B=(2+32+2+3)5+(23223)5

 * A= 2

 *Đặt:

x=2+32+2+3;y=23223x+y=2;xy=13B=x5+y5=(x3+y3)(x2+y2)x2y2(x+y)=1129

 

...

---Xem đầy đủ phần nội dung của Chuyên đề Bồi dưỡng HSG môn Toán 9 Chuyên đề Căn bậc hai, các bạn vui lòng xem trực tuyến hoặc tải file về máy---

 

Trên đây là một phần trích đoạn nội dung Bồi dưỡng HSG môn Toán 9 Chuyên đề Căn bậc hai. Để xem toàn bộ nội dung các em chọn chức năng xem online hoặc đăng nhập vào trang Chúng tôi để tải tài liệu về máy tính.

Hy vọng tài liệu này sẽ giúp các em học sinh ôn tập tốt và đạt thành tích cao trong kì thi sắp tới.

Chúc các em học tốt! 

Tham khảo thêm

Bình luận

Thảo luận về Bài viết

Có Thể Bạn Quan Tâm ?