Bài 2: Bất phương trình và hệ bất phương trình một ẩn

Bất phương trình là một khái niệm mà các em đã được tiếp cận từ những lớp nhỏ. Thông qua bài học này các em sẽ được ôn tập và tìm hiểu thêm một số phương pháp giải bất phương trình và hệ bất phương trình một ẩn.

Tóm tắt lý thuyết

1.1. Giải và biện luận bất phương trình dạng ax+b<0.

Giải bất phương trình dạng ax+b<0 (1)

  • Nếu a=0 thì bất phương trình có dạng 0.x+b<0

- Với b<0 thì tập nghiệm BPT là S = Æ

- Với b0 thì tập nghiệm BPT là S=R

  • Nếu a>0 thì (1)x<ba suy ra tập nghiệm là S=(;ba)
  • Nếu a<0 thì (1)x>ba suy ra tập nghiệm là S=(ba;+)

Các bất phương trình dạng ax+b>0,ax+b0,ax+b0 được giải hoàn toán tương tự

1.2. Hệ bất phương trình bậc nhất một ẩn

Để giải hệ bất phương trình bậc nhất một ẩn ta giải từng bất phương trình của hệ bất phương trình. Khi đó tập nghiệm của hệ bất phương trình là giao của các tập nghiệm từng bất phương trình.

Bài tập minh họa

 
 

DẠNG TOÁN 1: GIẢI BẤT PHƯƠNG TRÌNH DẠNG ax+b<0

Ví dụ:

Biện luận nghiệm của bất phương trình theo m:

a) mx+62x+3m

b)  (x+m)m+x>3x+4

c) (m2+9)x+3m(16x)

Hướng dẫn:

a) Bất phương trình tương đương với (m2)x<3m6

Với m=2 bất phương trình trở thành 0x0suy ra bất phương trình nghiệm đúng với mọi x.

Với m>2 bât phương trình tương đương với x<3m6m2=3

Với m<2 bât phương trình tương đương với x>3m6m2=3

Kết luận

m=2 bất phương trình nghiệm đúng với mọi x(có tập nghiệm là S=R).

m>2 bât phương trình có nghiệm là x<3(có tập nghiệm là S=(;3))

m<2 bât phương trình có nghiệm là x>3(có tập nghiệm là S=(3;+))

b) Bất phương trình tương đương với (m2)x>4m2

Với m=2 bất phương trình trở thành 0x>0suy ra bất phương trình vô nghiệm.

Với m>2 bât phương trình tương đương với x>4m2m2=m2

Với m<2 bât phương trình tương đương với x<4m2m2=m2

Kết luận

m=2 bất phương trình vô nghiệm

m>2 bât phương trình có nghiệm là x>m2

m<2 bât phương trình có nghiệm là x<m2

c) Bất phương trình tương đương với (m+3)2xm3

Với m=3 bất phương trình trở thành 0x6suy ra bất phương trình nghiệm đúng với mọi x.

Với m3 bât phương trình tương đương với xm3(m+3)2

Kết luận

m=3 bất phương trình nghiệm đúng với mọi x.

m3 bât phương trình có nghiệm là xm3(m+3)2.

DẠNG TOÁN 2: GIẢI HỆ BẤT PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN

Ví dụ 1:

Giải các hệ bất phương trình sau:

a) {5x2>4x+55x4<x+2

b) {6x+57<4x+78x+32<2x+5

c) {x12x33x<x+553x2x3

Hướng dẫn:

a) Hệ bất phương trình tương đương với

{5x2>4x+55x4<x+2{x>7x<32

Suy ra hệ bất phương trình vô nghiệm.

b) Hệ bất phương trình tương đương với

{6x+57<4x+78x+32<2x+5{x<227x<74x<74

Vậy hệ bất phương trình có nghiệm là x<74

d) Hệ bất phương trình tương đương với {x2x<52x115115x52

Vậy hệ bất phương trình có nghiệm là  115x52.

Ví dụ 2:

Tìm m để hệ bất phương trình {m(mx1)<2m(mx2)2m+1 có nghiệm.

Hướng dẫn:

Hệ bất phương trình tương đương với {m2x<m+2m2x4m+1

Với m=0 ta có hệ bất phương trình trở thành {0x<20x1 suy ra hệ bất phương trình vô nghiệm

Với m0 ta có hệ bất phương trình tương đương với {x<m+2m2x4m+1m2

Suy ra hệ bất phương trình có nghiệm khi và chỉ khi m+2m2>4m+1m2m<13

Vậy m<13 là giá trị cần tìm.

DẠNG TOÁN 3: BẤT PHƯƠNG TRÌNH QUY VỀ BẤT PHƯƠNG TRÌNH, HỆ BẤT PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN.

Ví dụ:

Cho bất phương trình  x1(x2m+2)0

a) Giải bất phương trình khi m=2

b) Tìm m để mọi x[2;3] đều là nghiệm của bất phương trình đã cho.

Hướng dẫn:

a) Khi m=2 bất phương trình trở thành x1(x2)0

Bất phương trình tương đương với [x1=0{x10x20

[x=1{x1x2[x=1x2

Vậy tập nghiệm bất phương trình là S={1}[2;+).

b) Bất phương trình tương đương với [x1=0{x10x2m+20[x=1{x1x2m2

+ TH1: 2m2>1m>32: Ta có bất phương trình[x=1x2m2

Suy ra tập nghiệm bất phương trình là S={1}[2m2;+).

Do đó mọi x[2;3] đều là nghiệm của bất phương trình (*)

[2;3]S2m22m2

Suy ra 32<m2 thỏa mãn yêu cầu bài toán.

+ TH2: 2m2=1m=32: Ta có bất phương trình[x=1x1x1

Suy ra m=32 thỏa mãn yêu cầu bài toán.

+ TH3: 2m2<1m<32: Ta có bất phương trình[x=1x1x1

Suy ra m<32thỏa mãn yêu cầu bài toán.

Vậy giá trị cần tìm là m2.

3. Luyện tập Bài 2 chương 4 đại số 10

Trong phạm vi bài học Chúng tôi giới thiệu đến các em khái niệm cơ bản về bất phương trình và hệ bất phương trình bậc nhất một ẩn và phương pháp giải bất phương trình và hệ bất phương trình bậc nhất một ẩn 

3.1. Trắc nghiệm về bất phương trình và hệ bất phương trình bậc nhất một ẩn 

Để cũng cố bài học xin mời các em cũng làm Bài kiểm tra Trắc nghiệm Toán 10 Chương 4 Bài 2 để kiểm tra xem mình đã nắm được nội dung bài học hay chưa.

Câu 5- Câu 10: Xem thêm phần trắc nghiệm để làm thử Online 

3.2. Bài tập SGK và Nâng Cao về bất phương trình và hệ bất phương trình bậc nhất một ẩn 

Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Toán 10 Chương 4 Bài 2 sẽ giúp các em nắm được các phương pháp giải bài tập từ SGK Đại số 10 Cơ bản và Nâng cao.

Bài tập 4.33 trang 110 SBT Toán 10

Bài tập 21 trang 116 SGK Toán 10 NC

Bài tập 22 trang 116 SGK Toán 10 NC

Bài tập 23 trang 116 SGK Toán 10 NC

Bài tập 24 trang 116 SGK Toán 10 NC

Bài tập 25 trang 121 SGK Toán 10 NC

Bài tập 26 trang 121 SGK Toán 10 NC

Bài tập 27 trang 121 SGK Toán 10 NC

Bài tập 28 trang 121 SGK Toán 10 NC

Bài tập 29 trang 121 SGK Toán 10 NC

Bài tập 30 trang 121 SGK Toán 10 NC

Bài tập 31 trang 121 SGK Toán 10 NC

4. Hỏi đáp về bài 2 chương 4 đại số 10

Nếu có thắc mắc cần giải đáp các em có thể để lại câu hỏi trong phần Hỏi đáp, cộng đồng Toán Chúng tôi sẽ sớm trả lời cho các em. 

Tham khảo thêm

Bình luận

Thảo luận về Bài viết

Có Thể Bạn Quan Tâm ?