GIẢI TOÁN BẰNG CÁCH LẬP PHƯƠNG TRÌNH DẠNG VỀ DÂN SỐ, LÃI XUẤT
VÀ TĂNG TRƯỞNG
1. Những kiến thức cần nhớ
+ x% = \(\frac{x}{{100}}\)
+ Dân số tỉnh A năm ngoái là a, tỷ lệ gia tăng dân số là x% thì dân số năm nay của tỉnh A là
\(a + a.\frac{x}{{100}}\)
Số dân năm sau là: \({\rm{(a + a}}{\rm{.}}\frac{{\rm{x}}}{{{\rm{100}}}}) + ({\rm{a + a}}{\rm{.}}\frac{{\rm{x}}}{{{\rm{100}}}}).\frac{{\rm{x}}}{{{\rm{100}}}}\)
2. Các ví minh minh hoa
Ví dụ 1: Bác Thời vay 2 000 000 đồng của ngân hàng để làm kinh tế gia đình trong thời hạn một năm. Lẽ ra cuối năm bác phải trả cả vốn lẫn lãi. Song bác đã được ngân hàng cho kéo dài thời hạn thêm một năm nữa, số lãi của năm đầu được gộp vào với vốn để tính lãi năm sau và lãi suất vẫn như cũ. Hết hai năm bác phải trả tất cả là 2 420 000 đồng. Hỏi lãi suất cho vay là bao nhiêu phần trăm trong một năm?
Giải
Gọi lãi suất cho vay là x (%),đk: x > 0
Tiền lãi suất sau 1 năm là \(2000000.\frac{x}{{100}} = 20000\) (đồng)
Sau 1 năm cả vốn lẫn lãi là 200000 + 20000 x (đồng)
Riêng tiền lãi năm thứ hai là \((2000000 + 20000x).\frac{x}{{100}} = 20000x + 200{x^2}({\rm{{\aa}ng}})\)
Số tiến sau hai năm Bác Thời phải trả là 2000000 +20000x + 20000x + 200x2 (đồng)
200x2 + 40000x +2000000 (đồng)
Theo bài ra ta có phương trình 200x2 + 40 000x + 2000000 = 2420000
⇔ x2 + 200x – 2100 = 0 .
Giải phương trình ta được x1 = 10 (thoả mãn); x2 = -210 (không thoả mãn)
Vậy lãi suất cho vay là 10 % trong một năm.
Ví dụ 2: Theo kế hoạch hai tổ sản xuất 600 sản phẩm trong một thời gian nhất định. Do áp dụng kỹ thuật mới nên tổ I đã sản xuất vượt mức kế hoạch là 18% và tổ II vượt mức 21%. Vì vậy trong thời gian quy định họ đã hoàn thành vượt mức 120 sản phẩm. Hỏi số sản phẩm được giao của mỗi tổ là bao nhiêu.
Giải
Gọi x là số sản phẩm tổ I hoàn thành theo kế hoạch (sản phẩm), đk 0 < x < 600.
Số sản phẩm tổ II hoàn thành theo kế hoạch là 600 – x (sản phẩm).
Số sản phẩm vượt mức của tổ I là \(x.\frac{{18}}{{100}}\) (sản phẩm).
Số sản phẩm vượt mức của tổ II là \((600 - x).\frac{{21}}{{100}}\) (sản phẩm).
Vì số sản phẩm vượt mức kế hoạch của hai tổ là 120 sản phẩm ta có pt
\(\frac{{18x}}{{100}} + \frac{{21(600 - x)}}{{100}} = 120\) ⇔ x = 20 (thoả mãn yêu cầu của bài toán)
Vậy số sản phẩm theo kế hoạch của tổ I là 200 (sản phẩm)
Vậy số sản phẩm theo kế hoạch của tổ II là 400 (sản phẩm)
Bài tập:
Bài 1: Dân số của thành phố Hà Nội sau 2 năm tăng từ 200000 lên 2048288 người. Tính xem hàng năm trung bình dân số tăng bao nhiêu phần trăm.
Bài 2: Bác An vay 10 000 000 đồng của ngân hàng để làm kinh tế. Trong một năm đầu bác chưa trả được nên số tiền lãi trong năm đầu được chuyển thành vốn để tính lãi năm sau. Sau 2 năm bác An phải trả là 11 881 000 đồng. Hỏi lãi suất cho vay là bao nhiêu phần trăm trong một năm?
Bài 3: Theo kế hoạch hai tổ sản xuất 1000 sản phẩm trong một thời gian dự định. Do áp dụng kỹ thuật mới nên tổ I vượt mức kế hoạch 15% và tổ hai vượt mức 17%. Vì vậy trong thời gian quy định cả hai tổ đã sản xuất được tất cả được 1162 sản phẩm. Hỏi số sản phẩm của mỗi tổ là bao nhiêu?
Kết quả:
Bài 1: Trung bình dân số tăng 1,2%
Bài 2: Lãi suất cho vay là 9% trong 1 năm
Bài 3: Tổ I được giao 400 sản phẩm. Tổ II được giao 600 sản phẩm
.........
---(Để xem tiếp nội dung bài các em vui lòng xem tại online hoặc đăng nhập để tải về máy)---
Trên đây là nội dung tài liệu Giải toán bằng cách lập phương trình dạng về dân số, lãi suất, tăng trưởng. Để xem thêm nhiều tài liệu tham khảo hữu ích khác các em chọn chức năng xem online hoặc đăng nhập vào trang Chúng tôi để tải tài liệu về máy tính.
Hy vọng tài liệu này sẽ giúp các em học sinh ôn tập tốt và đạt thành tích cao trong học tập.
Ngoài ra các em có thể tham khảo thêm một số tư liệu cùng chuyên mục tại đây:
- Giải toán bằng cách lập phương trình về toán chuyển động
- Giải toán bằng cách lập phương trình dạng làm chung công việc
Chúc các em học tập tốt !