Bài tập SGK Toán 11 Bài 2: Giới hạn của hàm số.
-
Bài tập 1 trang 132 SGK Đại số & Giải tích 11
Dùng định nghĩa tìm các giới hạn sau:
a) \(\underset{x\rightarrow 4}{lim} \ \frac{x+1}{3x - 2}\);
b) \(\underset{x \rightarrow +\infty }{lim}\frac{2-5x^{2}}{x^{2}+3}\).
-
Bài tập 2 trang 132 SGK Đại số & Giải tích 11
Cho hàm số \(f(x) =\left\{\begin{matrix} \sqrt{x}+1; &x\geq 0 \\ 2x;& x <0 \end{matrix}\right.\)
và các dãy số \((u_n)\) với \(u_n =\frac{1}{n}\), \((v_n)\) với \(v_n = -\frac{1}{n}\).
Tính \(lim u_n, lim v_n, lim f (u_n)\)và \(lim (v_n).\)
Từ đó có kết luận gì về giới hạn của hàm số đã cho khi x → 0 ?
-
Bài tập 3 trang 132 SGK Đại số & Giải tích 11
Tính các giới hạn sau:
a) \(\underset{x\rightarrow -3}{lim} \frac{x^{2 }-1}{x+1}\);
b) \(\underset{x\rightarrow -2}{lim}\frac{4-x^{2}}{x + 2}\);
c) \(\underset{x\rightarrow 6}{lim} \frac{\sqrt{x + 3}-3}{x-6}\);
d) \(\underset{x\rightarrow +\infty }{lim} \frac{2x-6}{4-x}\);
e) \(\underset{x\rightarrow +\infty }{lim} \frac{17}{x^{2}+1}\);
f) \(\underset{x\rightarrow +\infty }{lim} \frac{-2x^{2}+x -1}{3 +x}\).
-
Bài tập 4 trang 132 SGK Đại số & Giải tích 11
Tính các giới hạn sau:
a) \(\underset{x\rightarrow 2}{lim}\frac{3x -5}{(x-2)^{2}}\);
b) \(\underset{x\rightarrow 1^{-}}{lim}\frac{2x -7}{x-1}\);
c) \(\underset{x\rightarrow 1^{+}}{lim}\frac{2x -7}{x-1}\).
-
Bài tập 5 trang 133 SGK Đại số & Giải tích 11
Cho hàm số \(f(x) =\frac{x+2}{x^{2}-9}\) có đồ thị như hình dưới đây:
a) Quan sát đồ thị và nêu nhận xét về giá trị hàm số đã cho khi \(x \rightarrow -\infty\)
\(x \rightarrow 3^-\) và \(x \rightarrow 3^+\).
b) Kiểm tra các nhận xét trên bằng cách tính các giới hạn sau:
\(\underset{x\rightarrow -\infty }{lim} f(x)\) với f(x) được xét trên khoảng (-3; -3),
\(\underset{x\rightarrow 3^{-}}{lim}f(x)\) với f(x) được xét trên khoảng (-3,3),
\(\underset{x\rightarrow -3^{+}}{lim}f(x)\) với f(x) được xét trên khoảng (-3; 3).
-
Bài tập 6 trang 133 SGK Đại số & Giải tích 11
Tính:
a) \(\lim_{+\infty } (x^4 - x^2 + x - 1)\) ;
b) \(\lim_{-\infty } (-2x^3 + 3x^2 -5 )\);
c) \(\lim_{-\infty } \sqrt{x^2-2x+5}\)
d) \(\lim_{+\infty } \frac{\sqrt{x^2+1}+x}{5-2x}\)
-
Bài tập 7 trang 133 SGK Đại số & Giải tích 11
Một thấu kính hội tụ có tiêu cự là f. Gọi d và d' lần lượt là khoảng cách từ một vật thật AB và từ ảnh A'B' của nó tới quang tâm O của thấu kính. Công thức thấu kính là \(\frac{1}{d}+\frac{1}{d'}=\frac{1}{f}.\)
a) Tìm biểu thức xác định hàm số d' = f(d).
b) Tìm \(\underset{d\rightarrow f^{+} }{lim}φ(d)\), \(\underset{d\rightarrow f^{-} }{lim}φ(d)\) và \(\underset{d\rightarrow +\infty }{lim}φ(d)\). Giải thích ý nghĩa của các kết quả tìm được.
-
Bài tập 4.18 trang 165 SBT Toán 11
Dùng định nghĩa tìm các giới hạn
a) \(\mathop {\lim }\limits_{x \to 5} \frac{{x + 3}}{{3 - x}}\)
b) \(\mathop {\lim }\limits_{x \to + \infty } \frac{{{x^3} + 1}}{{{x^2} + 1}}\)
-
Bài tập 4.19 trang 165 SBT Toán 11
Cho hàm số \(f(x) = \left\{ \begin{array}{l}
{x^2},\,\,\,\,\,\,\,\,\,x \ge 0\\
{x^2} - 1,\,\,x < 0
\end{array} \right.\)a) Vẽ đồ thị của hàm số
Từ đó dự đoán về giới hạn của khi x → 0b) Dùng định nghĩa chứng minh dự đoán trên.
-
Bài tập 4.20 trang 165 SBT Toán 11
a) Chứng minh rằng hàm số
không có giới hạn khi \(x \to + \infty \)b) Giải thích bằng đồ thị kết luận ở câu a).
-
Bài tập 4.21 trang 165 SBT Toán 11
Cho hai hàm số
và cùng xác định trên khoảng \(( - \infty ;a)\). Dùng định nghĩa chứng minh rằng nếu \(\mathop {\lim }\limits_{x \to - \infty } f(x) = L\) và \(\mathop {\lim }\limits_{x \to - \infty } g(x) = M\) thì \(\mathop {\lim }\limits_{x \to - \infty } f(x).g(x) = L.M\). -
Bài tập 4.22 trang 165 SBT Toán 11
Tìm giới hạn của các hàm số sau
a) \(f(x) = \frac{{{x^2} - 2x - 3}}{{x - 1}}\) khi \(x\to 3\)
b) \(h(x) = \frac{{2{x^3} + 15}}{{{{(x + 2)}^2}}}\) khi \(x\to -2\)
c) \(k(x) = \sqrt {4{x^2} - x + 1} \) khi \(x \to - \infty \)
d) \(h(x) = \frac{{x - 15}}{{x + 2}}\) khi \(x \to - {2^ + }\) và