Bài 2: Giá trị lượng giác của một cung

Nội dung bài học sẽ giới thiệu đến các em khái niệm cơ bản về Giá trị lượng giác của một cung và phương pháp giải một số dạng toán cơ bản liên quan đến giá trị lượng giác của một cung.

Tóm tắt lý thuyết

1.1. Giá trị lượng giác của cung α

1.1.1. Định nghĩa

Trên đường tròn lượng giác, cho điểm M(xo,yo) sao cho cung lượng giác AM có sđAM=α. Khi đó:

sinα=OK=y0cosα=OH=x0tanα=sinαcosα(cosα0)cotα=cosαsinα(sinα0)

Định nghĩa: Các giá trị sinα,cosα,tanα,cotα được gọi là các giá trị lượng giác của cung . Ta cũng gọi trục tung là trục sin, còn trục hoành là trục côsin.

Chú ý:

1. Các định nghĩa trên cũng áp dụng cho các góc lượng giác.

2. Nếu 0α180 thì các giá trị lượng giác của góc α chính là các giá trị lượng giác của góc đó.

Ví dụ 1: Tính sin25π4cos(240o)

 Hướng dẫn:

Để tính giá trị lượng giác của cung lượng giác AM có số đo α bất kì, ta thực hiện theo các bước:

+ Biểu diễn cung lượng giác AM trên đường tròn lượng giác.

+ Tìm tọa độ điểm M, từ đó áp dụng định nghĩa suy ra các giá trị lượng giác cần tìm.

Ta có 25π4=π4+3.2π

Suy ra sin25π4=sinπ4=22

Tương tự 2400=12003600

Suy ra cos(240o)=cos120=12

1.1.2. Hệ quả

1) sinαcosα xác định với mọi αR.

sin(α+k2π)=sinα,kZcos(α+k2π)=cosα,kZ

2) 1sinα1,1cosα1

3) Với mọi mR1m1 đều tồn tại αβ sao cho sinα=mcosα=m.

4) tanα xác định với mọi απ2+kπ(kZ)

5) cotα xác định với mọi αkπ(kZ)

6) Bảng xác định dấu của các giá trị lượng giác 

1.1.3. Giá trị lượng giác của các cung đặc biệt

1.2. Ý nghĩa hình học của tang và côtang

Ý nghĩa hình học của tanα và cotα

tanα=AT

Trục  t'At được gọi là trục tang.

cotα=BS

Trục  s'Bs được gọi là trục côtang.

Chú ý: 

tan(α+kπ)=tanαcot(α+kπ)=cotα

1.3. Quan hệ giữa các giá trị lượng giác

1.3.1. Công thức lượng giác cơ bản

sin2α+cos2α=11+tan2α=1cos2α,απ2+kπ,kZ1+cot2α=1sin2α,αkπ,kZtanα.cotα=1,αkπ2,kZ

1.3.2. Giá trị lượng giác của các cung có liên quan đặc biệt 
1) Cung đối nhau: αα

Các điểm cuối của hai cung AM và AM' đối xứng nhau qua trục hoành nên ta có:

cos(α)=cosαsin(α)=sinαtan(α)=tanαcot(α)=cotα


2) Cung bù nhau: α và πα

Các điểm cuối của hai cung AM và AM' đối xứng với nhau qua trục tung, nên ta có:

 

sin(πα)=sinαcos(πα)=cosαtan(πα)=tanαcot(πα)=cotα

 

3) Hơn kém nhau ππ và (α+π)

Các điểm cuối của hai cung đối xứng nhau qua gốc tọa độ, nên ta có:

 

sin(α+π)=sinαcos(α+π)=cosαtan(α+π)=tanαcot(α+π)=cotα

4) Cung phụ nhau: α và απ2

Các điểm cuối của hai cung đối xứng nhau qua đường phân giác d của góc xOy, nên ta có:

 

sin(π2α)=cosαcos(π2α)=sinαtan(π2α)=cotαcot(π2α)=tanα

 

Chú ý: Để ghi nhớ các công thức trên dễ dàng ta học thuộc câu: “cos-đối, sin-bù, phụ-chéo, hơn kém nhau- tan và cot”. 

Bài tập minh họa

 
 

Ví dụ 1: Cho sinα=32 với 0<α<π2.  Tính cosα

Hướng dẫn:

Ta có sin2α+cos2α=1

cos2α=1sin2α=1(32)2=14cosα=±12

0<α<π2 nên cosα>0 cosα=12

Ví dụ 2: Cho cosα=116 với 3π2<α<2π. Tính sinα

Hướng dẫn:

Ta có sin2α+cos2α=1

sin2α=1cos2α=1(116)2=2536sinα=±56

3π2<x<2π nên sinα<0 sinα=56

Ví dụ 3: Rút gọn biểu thức sau

A=cos(900x).sin(1800x)sin(900x).cos(1800x)

Hướng dẫn: 

Sử dụng công thức cung phụ nhau và cung bù nhau

Ta có A=cos(900x).sin(1800x)sin(900x).cos(1800x)

=sinx.sinxcosx.(cosx)=sin2x+cos2x=1

Ví dụ 4: Tính 

a)cos(11π4)b)tan31π6c)sin(13800)

Hướng dẫn:

- Sử dụng cung đối

- Biến đổi về góc nhỏ (dựa vào chu kỳ của cosα2π)

- Sử dụng cung bù

a)cos(11π4)=cos11π4=cos(2π+3π4)=cos3π4=cos(ππ4)=cosπ4=22

b)tan31π6=tan(4π+7π6)=tan7π6=tan(π+π6)=tanπ6=33

c)sin(13800)=sin(13800)=sin(4.3600600)=sin(600)=sin600=12

3. Luyện tập Bài 2 chương 6 đại số 10

Trong phạm vi bài học Chúng tôi chỉ giới thiệu đến các em những nội dung cơ bản nhất về giá trị lượng giác của một cung và phương pháp giải một số dạng toán cơ bản liên quan đến giá trị lượng giác của một cung.

3.1 Trắc nghiệm về giá trị lượng giác của một cung

Để cũng cố bài học xin mời các em cũng làm Bài kiểm tra Trắc nghiệm Toán 10 Bài 2 để kiểm tra xem mình đã nắm được nội dung bài học hay chưa.

Câu 7- Câu 18: Xem thêm phần trắc nghiệm để làm thử Online 

3.2 Bài tập SGK và Nâng Cao về giá trị lượng giác của một cung

Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Toán 10 Bài 2 sẽ giúp các em nắm được các phương pháp giải bài tập từ SGK Đại số 10 Cơ bản và Nâng cao.

Bài tập 25 trang 205 SGK Toán 10 NC

Bài tập 26 trang 205 SGK Toán 10 NC

Bài tập 27 trang 206 SGK Toán 10 NC

Bài tập 28 trang 206 SGK Toán 10 NC

Bài tập 30 trang 206 SGK Toán 10 NC

Bài tập 31 trang 206 SGK Toán 10 NC

Bài tập 32 trang 206 SGK Toán 10 NC

Bài tập 33 trang 206 SGK Toán 10 NC

Bài tập 34 trang 207 SGK Toán 10 NC

Bài tập 35 trang 207 SGK Toán 10 NC

Bài tập 36 trang 207 SGK Toán 10 NC

Bài tập 37 trang 207 SGK Toán 10 NC

4. Hỏi đáp về bài 2 chương 6 đại số 10

Nếu có thắc mắc cần giải đáp các em có thể để lại câu hỏi trong phần Hỏi đáp, cộng đồng Toán Chúng tôi sẽ sớm trả lời cho các em. 

Tham khảo thêm

Bình luận

Thảo luận về Bài viết

Có Thể Bạn Quan Tâm ?