Chuyên đề Số chính phương

SỐ CHÍNH PHƯƠNG

I- ĐỊNH NGHĨA: Số chính phương là số bằng bình phương đúng của một số nguyên.

II- TÍNH CHẤT:

1- Số chính phương chỉ có thể có chữ số tận cùng bằng 0, 1, 4, 5, 6, 9; không thể có chữ tận cùng bằng 2, 3, 7, 8.

2- Khi phân tích ra thừa số nguyên tố, số chính phương chỉ chứa các thừa số nguyên tố với số mũ chẵn.

3- Số chính phương chỉ có thể có một trong hai dạng 4n hoặc 4n+1. Không có số chính phương nào có dạng 4n + 2 hoặc 4n + 3 (n \( \in \) N).

4- Số chính phương chỉ có thể có một trong hai dạng 3n hoặc 3n +1. Không có số chính phương nào có dạng  3n + 2 (n  \( \in \) N).

5- Số chính phương tận cùng bằng 1, 4 hoặc  9 thì chữ số hàng chục là chữ số chẵn.

Số chính phương tận cùng bằng 5 thì chữ số hàng chục là 2.

Số chính phương tận cùng  bằng 6 thì chữ số hàng chục là chữ số lẻ.

6- Số chính phương chia hết cho 2 thì chia hết cho 4.

Số chính phương chia hết cho 3 thì chia hết cho 9

Số chính phương chia hết cho 5 thì chia hết cho 25

Số chính phương chia hết cho 8 thì chia hết cho 16.

III- MỘT SỐ DẠNG BÀI TẬP VỀ SỐ CHÍNH PHƯƠNG.

A- Dạng 1: CHỨNG MINH MỘT SỐ LÀ SỐ CHÍNH PHƯƠNG.

Bài 1Chứng minh rằng mọi số nguyên x, y thì:

        \(A = (x + y)(x + 2y)(x + 3y)(x + 4y) + {y^4}\)  là số chính phương.

Giải : Ta có

\(\begin{array}{l} A = (x + y)(x + 2y)(x + 3y)(x + 4y) + {y^4}\\ = ({x^2} + 5xy + 4{y^2})({x^2} + 5xy + 6{y^2}) + {y^4} \end{array}\)

Đặt \({x^2} + 5xy + 5{y^2} = t\,\,\,t \in Z\) thì

       \(A = (t - {y^2})(t + {y^2}) + {y^4} = {t^2} - {y^4} + {y^4} = {t^2} = {\left( {{x^2} + 5xy + 5{y^2}} \right)^2}\)

Vì  x, y, \( \in \) Z nên \({x^2} \in Z,\,5xy \in Z,\,5{y^2} \in Z \Rightarrow {x^2} + 5xy + 5{y^2} \in Z\)

Vậy A là số chính phương.

Bài 2: Chứng minh tích của 4 số tự nhiên  liên tiếp cộng 1 luôn là số chính phương.

Giải : Gọi 4 số tự nhiên, liên tiếp đó là n, n+1, n+2, n+3 (n \( \in \) Z). Ta có:

\(\begin{array}{l} n(n + 1)(n + 2)(n + 3) + 1\\ = n(n + 3)(n + 1)(n + 2) + 1\\ = ({n^2} + 3n)({n^2} + 3n + 2) + 1 \end{array}\)

Đặt  \({n^2} + 3n = t\) thì (*)  = t(t + 2) + 1 = t2 + 2t + 1 = (t + 1)2

                                               = (n2 + 3n + 1)2

Vì n \( \in \) N nên n2 + 3n + 1 \( \in \) N.  Vậy n(n + 1)(n + 2)(+ 3) + 1 là số chính phương.

Trên đây chỉ trích một phần nội dung của số chính phương. Để xem toàn bộ nội dung bài học các em có thể xem online hoặc đăng nhập vào trang Chúng tôi.net để tải về máy tính. Hi vọng tài liệu này giúp các em ôn tập và đạt thành tích cao trong kì thi sắp tới. Chúc các em học tốt!

Tham khảo thêm

Bình luận

Có Thể Bạn Quan Tâm ?