Bài 3: Hình thang cân

Với bài học này, chúng ta sẽ làm quen với Hình thang cân, cùng với các ví dụ minh họa có hướng dẫn giải chi tiết sẽ giúp các em dễ dàng làm chủ nội dung bài học.

Tóm tắt lý thuyết

1.1 Định nghĩa

Hình thang cân là hình thang có hai góc kề một đáy bằng nhau.

ABCD là hình thang cân (đáy AB; CD)

\( \Leftrightarrow {\rm{ AB // CD }}\) và \({\rm{\hat C = \hat D}}\)

1.2 Tính chất

Định lí 1: Trong một hình thang cân, hai cạnh bên bằng nhau, ABCD là hình thang cân (đáy AB, CD)  => AD = BC

Định lí 2: Trong một hình thang cân, hai đường chéo bằng nhau, ABCD là hình thang cân (đáy AB, CD)  => AC = BD

Định lí 3: Hình thang có hai đường chéo bằng nhau là hình thang cân. Hình thang ABCD (đáy AB, CD) có AC = BD  => ABCD là hình thang cân.

Dấu hiệu nhận biết hình thang cân:

- Hình thang có hai góc kề một đáy bằng nhau là hình thang cân.

- Hình thang có hai đường chéo bằng nhau là hình thang cân.

Lưu ý: 

* Hình thang cân thì có 2 cạnh bên bằng nhau nhưng hình thang có 2 cạnh bên bằng nhau chưa chắc là hình thang cân. Ví dụ như hình vẽ dưới đây:

 

Bài tập minh họa

 
 

Bài 1: Cho hình thang cân ABCD có \(AB\parallel CD\), AB < CD, H và K lần lượt là hình chiếu vuông góc của A và B lên CD. Chứng minh rằng: DK=HC.

Hướng dẫn:

Ta có hình vẽ như sau: 

Xét hai tam giác vuông ADH và BCK ta có:

AD=BC (hai cạnh bên của hình thang cân)

\(\angle ADH = \angle BCK\) (hai góc kề một đáy của hình thang cân)

\( \Rightarrow \Delta ADH = \Delta BCK\) (cạnh huyền- góc nhọn)

 ⇒DH = CK

⇒DH+HK =CK+HK

⇒DK=CH ( điều phải chứng minh)

Bài 2: Cho hình thang cân ABCD có \(AB\parallel CD\) ,AB < CD, gọi E là giao điểm của hai cạnh bên, F là giao điểm của hai đường chéo. chứng minh rằng EF là trung trực của AB.

Hướng dẫn:

Ta có hình vẽ: 

Dễ thấy rằng EAB là tam giác cân tại E , ta có  EA=EB nên E nằm trên đường trung trực của AB.(1)

Xét hai tam giác ABD và BAC ta có:

AB là cạnh chung

AD=BD (cạnh bên của hình thang cân)

AC=BD (hai đường chéo của hình thang cân)

\( \Rightarrow \Delta ABD = \Delta BAC\) (cạnh-cạnh-cạnh)

\(\angle ABD = \angle BAC\)

⇒ AFD là tam giác cân tại F

⇒AF=BF nên F cũng nằm trên đường trung trực của AB(2)

Từ (1) và (2) có È là đường trung trực của AB (điều phải chứng minh)

Bài 3: Hình thang cân ABCD với AB, CD là hai đáy, AB < CD có \(BD \bot BC\) , BD là phân giác của góc D, biết BC=6 cm. Tính chu vi hình thang.

Hướng dẫn:


Ta có:\(\angle ADC = \angle BCD\) (tính chất hình thang cân)

Mà \(\angle BDC = \frac{1}{2}\angle ADC\) (tính chất đường phân giác)

\( \Rightarrow \angle BDC = \frac{1}{2}\angle BCD\)

Bên cạnh đó ta còn có \(\angle BDC + \angle BCD = {90^0}\)

Từ đó ta được \(\begin{array}{l} \angle BDC = {30^0}\\ \angle BCD = {60^0} \end{array}\)

Gọi E là trung điểm của CD, xét tam giác BEC ta có:

\(BE = EC = \frac{1}{2}CD\) (BE là trung tuyến ứng với cạnh huyền nên bằng một nửa cạnh huyền)

\(\angle BCD = {60^0}\)

⇒Tam giác BEC là tam giác đều ⇒\(BC = BE = EC = \frac{1}{2}CD\)

⇒CD=2.BC=2.6=12 (cm)

Ta có:

 \(\angle ADB = \angle BDE\) (tính chất đường phân giác)

\(\angle BDE = \angle ABD\) (hai góc so le trong)

\(\angle ADB = \angle ABD\)

⇒ Tam gác ABD cân tại A

⇒AB=AD

mà AD=BC=6 nên AB=6 cm

Vậy chu vi hình thang ABCD là : AB+BC+CD+DA=6+6+12+6=30 (cm)

3. Luyện tập Bài 3 Toán 8 tập 1

Qua bài giảng Hình thang cân này, các em cần hoàn thành 1 số mục tiêu mà bài đưa ra như : 

  • Nắm được khái niệm hình thang cân
  • Nhận biết được hình thang cân
  • Ghi nhớ được tính chất, của hình thang
  • Vận dụng kiến thức giải được một số bài toán liên quan

3.1 Trắc nghiệm về Hình thang cân

Các em có thể hệ thống lại nội dung kiến thức đã học được thông qua bài kiểm tra Trắc nghiệm Hình học 8 Bài 3 cực hay có đáp án và lời giải chi tiết. 

    • A. Hình thang cân là hình thang có hai góc kề một cạnh bên bằng nhau
    • B. Hình thang cân là hình thang có hai góc kề một cạnh đáy bằng nhau
    • C. Hình thang cân là hình thang có hai cạnh bên bằng nhau
    • D. Hình thang cân là hình thang có hai cạnh đáy bằng nhau
    • A. Trong hình thang cân hai cạnh bên bằng nhau
    • B. Trong hình thang cân hai đường chéo bằng nhau
    • C. Trong hình thang cân hai đường chéo vuông góc với nhau
    • D. Trong hình thang cân hai góc kề một cạnh đáy bằng nhau

Câu 2- Câu 5: Xem thêm phần trắc nghiệm để làm thử Online 

3.2. Bài tập SGK về Hình thang cân

Các em có thể xem thêm phần hướng dẫn Giải bài tập Hình học 8 Bài 3 để giúp các em nắm vững bài học và các phương pháp giải bài tập.

Bài tập 11 trang 74 SGK Toán 8 Tập 1

Bài tập 12 trang 74 SGK Toán 8 Tập 1

Bài tập 13 trang 74 SGK Toán 8 Tập 1

Bài tập 14 trang 75 SGK Toán 8 Tập 1

Bài tập 15 trang 75 SGK Toán 8 Tập 1

Bài tập 16 trang 75 SGK Toán 8 Tập 1

Bài tập 17 trang 75 SGK Toán 8 Tập 1

Bài tập 18 trang 75 SGK Toán 8 Tập 1

Bài tập 19 trang 75 SGK Toán 8 Tập 1

4. Hỏi đáp Bài 3 Chương 1 Hình học 8 tập 1

Trong quá trình học tập nếu có thắc mắc hay cần trợ giúp gì thì các em hãy comment ở mục Hỏi đáp, Cộng đồng Toán Chúng tôi sẽ hỗ trợ cho các em một cách nhanh chóng!

Chúc các em học tập tốt và luôn đạt thành tích cao trong học tập!

Tham khảo thêm

Bình luận

Có Thể Bạn Quan Tâm ?