Nội dung bài học sẽ giúp các em nắm được khái niệm Giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên một miền, các phương pháp ứng dụng đạo hàm để tìm Giá trị lớn nhất và nhỏ nhất của hàm số đi kèm với những ví dụ minh họa sẽ giúp các em hình thành và phát triển kĩ năng giải bài tập ở dạng toán này.
Tóm tắt lý thuyết
2.1. Định nghĩa
Cho hàm số \(y=f(x)\) xác định trên tập D.
-
M được gọi là GTLN của \(f(x)\) trên D nếu: \(\left\{\begin{matrix} f(x)\leq M\\ \exists x_0, f(x_0)=M \end{matrix}\right.\).
-
m được gọi là GTNN của \(f(x)\) trên D nếu: \(\left\{\begin{matrix} m\leq f(x), \forall x\in D\\ \forall x_0\in D, f(x_0)=m \end{matrix}\right.\).
2.2. Các phương pháp tìm GTLN và GTNN của hàm số
a) Tìm GTLN và GTNN của hàm số trên miền D
Để tìm GTLN, GTNN của hàm số \(y=f(x)\) xác định trên tập hợp D, ta tiến hành khảo sát sự biến thiên của hàm số trên D, rồi căn cứ vào bảng biến thiên của hàm số đưa ra kết luận về GTLN và GTNN của hàm số.
b) Tìm GTLN và GTNN của hàm số trên một đoạn
-
Định lý: Mọi hàm số liên tục trên một đoạn đều có giá trị lớn nhất và giá trị nhỏ nhất trên đoạn đó.
-
Quy tắc tìm GTLN và GTNN của hàm số \(f(x)\) liên tục trên một đoạn \([a;b].\)
-
Tìm các điểm \(x_i\in (a ; b)\) (i = 1, 2, . . . , n) mà tại đó \(f'(x_i)=0\) hoặc \(f'(x_i)\) không xác định.
-
Tính \(f(x),f(b),f(x_i)\) (i = 1, 2, . . . , n).
-
Khi đó :
-
Bài tập minh họa
3.1. Dạng 1: Tìm GTLN và GTNN của hàm số trên miền D
Tìm GTLN-GTNN của các hàm số sau:
a) Hàm số \(y=x^3-3x^2-9x+5\).
b) Hàm số \(y=\frac{x^2+2x+3}{x-1},x\in(1;3].\)
Lời giải:
a) Hàm số \(y=x^3-3x^2-9x+5\).
-
TXĐ: \(D=\mathbb{R}.\)
-
\(y'=3x^2-6x-9.\)
-
\(y' = 0 \Leftrightarrow 3{x^2} - 6x - 9 = 0 \Leftrightarrow \left[ \begin{array}{l} x = - 1\\ x = 3 \end{array} \right.\)
-
Bảng biến thiên:
-
Vậy hàm số không có giá trị lớn nhất và giá trị nhỏ nhất.
b) Xét hàm số \(y=\frac{x^2+2x+3}{x-1}\) xác định trên \((1;3].\)
-
\(y'=\frac{x^2-2x-5}{(x+1)^2}\)
-
\(y' = 0 \Rightarrow {x^2} - 2x - 5 = 0 \Leftrightarrow \left[ \begin{array}{l} x = 1 + \sqrt 6 \notin \left( {1;3} \right]\\ x = 1 - \sqrt 6 \notin \left( {1;3} \right] \end{array} \right.\)
-
Bảng biến thiên:
-
Vậy hàm số có giá trị nhỏ nhất \(\mathop {Min}\limits_{x \in (1;3]} y = 9\), Hàm số không có giá trị lớn nhất.
3.2. Dạng 2: Tìm GTLN và GTNN của hàm số trên một đoạn
Tìm GTLN-GTNN của các hàm số sau:
a) Hàm số \(y = f\left( x \right) = - \frac{1}{3}{x^3} + {x^2} - 2x + 1\) trên đoạn \(\left[ { - 1;0} \right]\).
b) Hàm số \(y = f\left( x \right) = \frac{{2x + 1}}{{x - 2}}\) trên đoạn \(\left[ { - \frac{1}{2};1} \right]\).
c) Hàm số \(y = f\left( x \right) = {\sin ^2}x - 2\cos x + 2\).
Lời giải:
a) Hàm số \(y = f\left( x \right) = - \frac{1}{3}{x^3} + {x^2} - 2x + 1\) xác định trên đoạn \(\left[ { - 1;0} \right]\).
-
\({f^/}\left( x \right) = - {x^2} + 2x - 2\)
-
\({f^/}\left( x \right) = 0 \Leftrightarrow - {x^2} + 2x - 2 = 0\)
-
Ta có: \(f\left( { - 1} \right) = \frac{{11}}{3};f\left( 0 \right) = 1\).
-
Vậy: \(\mathop {\max f\left( x \right)}\limits_{\left[ { - 1;0} \right]} = \frac{{11}}{3}\); \(\mathop {\min f\left( x \right)}\limits_{\left[ { - 1;0} \right]} = 1\)
b) Hàm số \(y = f\left( x \right) = \frac{{2x + 1}}{{x - 2}}\) xác định trên đoạn \(\left[ { - \frac{1}{2};1} \right]\)
-
\({f^/}\left( x \right) = - \frac{5}{{{{\left( {x - 2} \right)}^2}}} < 0,\forall x \in\left [ -\frac{1}{2};1 \right ]\)
-
Ta có: \(f\left( { - \frac{1}{2}} \right) = 0;f\left( 1 \right) = - 3\)
-
Vậy: \(\mathop {\max f\left( x \right)}\limits_{\left[ { - \frac{1}{2};1} \right]} = 0\); \(\mathop {min f\left( x \right)}\limits_{\left[ { - \frac{1}{2};1} \right]} = - 3\)
c) Hàm số \(y = f\left( x \right) = {\sin ^2}x - 2\cos x + 2\).
-
TXĐ: \(D=\mathbb{R}\)
-
Ta có: \(f\left( x \right) = {\sin ^2}x - 2\cos x + 2 = - c{\rm{o}}{{\rm{s}}^2}x - 2co{\mathop{\rm s}\nolimits} x + 3\)
-
Đặt: \(t = {\cos ^2}x\) suy ra \(t \in \left[ { - 1;1} \right];\forall x \in \mathbb{R}\).
-
Xét hàm số: \(g\left( t \right) = - {t^2} - 2t + 3\) trên đoạn \([-1;1]\).
-
Ta có: \({g^/}\left( t \right) = - 2t - 2\)
-
\({g^/}\left( t \right) = 0 \Leftrightarrow t = - 1\)
-
Tính: \(g\left( { - 1} \right) = 4;g\left( 1 \right) = 0\).
-
-
Vậy: \(\max f(x) = \mathop {\max }\limits_{{\rm{[}} - 1;1]} g(t) = 4\); \(\min f(x) = \mathop {\min }\limits_{{\rm{[}} - 1;1]} g(t) = 0\).
4. Luyện tập Bải 3 Toán 12
Chúng tôi giới thiệu đến các em những nội dung cơ bản nhất, trọng tâm bài học các em cần phải nắm được hai phương pháp tìm Giá trị lớn nhất và giá trị nhỏ nhất của hàm số.
4.1. Trắc nghiệm GTLN và GTNN của hàm số
Để kiểm tra xem đã nắm được bài học hay chưa, cũng như rèn luyện khả năng giải bài tập, xin mời các em làm bài kiểm tra Trắc nghiệm Toán 12 Chương 1 Bài 3.
-
Câu 1:
Tìm giá trị nhỏ nhất của hàm số \(y = {x^3} - 3{x^2} - 9x + 6\) trên \(\left[ { - 4;4} \right]\).
- A. \(\mathop {Min}\limits_{\left[ { - 4;4} \right]} y = 21\)
- B. \(\mathop {Min}\limits_{\left[ { - 4;4} \right]} y = - 14\)
- C. \(\mathop {Min}\limits_{\left[ { - 4;4} \right]} y = 11\)
- D. \(\mathop {Min}\limits_{\left[ { - 4;4} \right]} y = - 70\)
-
- A. 1
- B. 2
- C. 3
- D. 4
-
- A. \(M=2\)
- B. \(M=\sqrt3\)
- C. \(M=1\)
- D. \(M=-\sqrt3\)
-
- A. m=-2
- B. m=1
- C. m=-3
- D. m=-5
-
Câu 5:
Tìm giá trị của m để hàm số \(y = - {x^3} - 3{x^2} + m\) có giá trị nhỏ nhất trên [-1;1] bằng 0?
- A. m=0
- B. m=6
- C. m=4
- D. m=2
Câu 6- Câu 15: Xem thêm phần trắc nghiệm để làm thử Online
4.2. Bài tập SGK và Nâng cao Bài 3 Chương 1
Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Toán 12 Chương 1 Bài 3 sẽ giúp các em nắm được các phương pháp giải bài tập từ SGK Giải tích 12 Cơ bản và Nâng cao.
Bài tập 17 trang 22 SGK Toán 12 NC
Bài tập 18 trang 22 SGK Toán 12 NC
Bài tập 19 trang 22 SGK Toán 12 NC
Bài tập 20 trang 22 SGK Toán 12 NC
Bài tập 21 trang 22 SGK Toán 12 NC
Bài tập 22 trang 23 SGK Toán 12 NC
Bài tập 23 trang 23 SGK Toán 12 NC
Bài tập 24 trang 23 SGK Toán 12 NC
Bài tập 25 trang 23 SGK Toán 12 NC
Bài tập 26 trang 23 SGK Toán 12 NC
Bài tập 27 trang 24 SGK Toán 12 NC
Bài tập 28 trang 24 SGK Toán 12 NC
5. Hỏi đáp về GTLN và GTNN của hàm số
Nếu có thắc mắc cần giải đáp, các em có thể đặt câu hỏi trong phần Hỏi đáp, cộng đồng Toán Chúng tôi sẽ sớm giải đáp cho các em.