TRƯỜNG THCS PHÚ LƯƠNG | ĐỀ THI HSG LỚP 6 MÔN: TOÁN (Thời gian làm bài: 120 phút) |
Đề số 1
Bài 1 : (3 đ)
Người ta viết các số tự nhiên liên tiếp bắt đầu từ 1 đến 2006 liền nhau thành một số tự nhiên L . Hỏi số tự nhiên L có bao nhiêu chữ số .
Bài 2 : (3đ)
Có bao nhiêu chữ số gồm 3 chữ số trong đó có chữ số 4 ?
Bài 3 : (4đ)
Cho băng ô gồm 2007 ô như sau :
| 17 |
| 36 |
|
| 19 |
|
|
|
|
Phần đầu của băng ô như trên . Hãy điền số vào chố trống sao cho tổng 4 số ở 4 ô liền nhau bằng 100 và tính :
a) Tổng các số trên băng ô .
b) Tổng các chữ số trên băng ô .
b) Số điền ở ô thứ 1964 là số nào ?
ĐÁP ÁN
Bài 1 : Có 9 số có 1 chữ số từ 1 đến 9 ( 0.25đ)
Có 90 số có 2 chữ số từ 10 đến 99 (0.5đ)
Có 900 số có 3 chữ số từ 100 đến 999 (0.5đ)
Các số có 4 chữ số là từ 1000 đến 2006 có :
2006 - 1000 + 1 = 1007 số (0.5đ)
Số chữ số của số tự nhiên L là :
9 + 90.2 + 900.3 + 1007.4 = 6917 (chữ số ) (1.25đ)
Bài 2 : Có 900 số có 3 chữ số từ 100 đến 999 (0.25đ)
Ta chia 900 sô thành 9 lớp , mỗi lớp có 100 số (0.25đ) có cùng chữ số hàng trăm .
Lớp thứ nhất gồm 100 số từ 100 đến 199
Lớp thứ hai gồm 100 số từ 200 đến 299
…………………………………
Lớp thứ 9 gồm 100 số từ 900 đến 999 (05đ)
Xét 9 lớp thì lớp thứ 4 cả 100 số đều có chữ số 4 ở hàng trăm .
8 lớp còn lại hàng trăm khác 4 nên chữ số 4 nếu có thì ở hàng chục và hàng đơn vị (0.25đ) .
Xét lớp thứ nhất thì các số có chữ số 4 làm hàng đơn vị gồm : 104, 114……194 (có 10 số ) (05đ)
các số có 4 chữ số làm hàng chục là
140,141,142,………..149 (có 10 số) (0.5đ)
Nhưng số 144 có mặt ở trong cả 2 trờng hợp vậy ở lớp thứ nhất số lợng số có chữ số 4 là :
10 + 10 - 1 = 19 (số) (0.25đ)
Bảy lớp còn lại cũng theo quy luật ấy . Vậy số lợng số có 3 chữ số có chữ số 4 là :
100 + 19.8 = 252 số (0.5đ)
.........
---(Để xem tiếp nội dung của đề thi các em vui lòng xem tại online hoặc đăng nhập để tải về máy)---
Đề số 2
Bài 1: (1 điểm)Điền dấu thích hợp vào ô trống:
Nếu ab và b10 a 10
Viết tập hợp M các số chẵn a thỏa mãn a 10
Có bao nhiêu số chẵn nhỏ hơn n (n \( \in \) N)
Bài 2: (2 điểm)Cho A = 3 + 32 + 33 + 34 ………+ 3100 chứng minh A chia hết cho 120.
Bài 3: (2 điểm)Cho các số 0; 1; 3; 5; 7; 9. Hỏi có thể thiết lập được bao nhiêu số có 4 chữ số chia hết cho 5 từ sáu chữ số đã cho.
Bài 4: (2 điểm) Tổng số trang của 8 quyển vở loại 1 ; 9 quyển vở loại 2 và 5 quyển vở loại 3 là 1980 trang. Số trang của một quyển vở loại 2 chỉ bằng số trang của 1 quyển vở loại 1. Số trang của 4 quyển vở loại 3 bằng số trang của 3 quyển vở loại 2. Tính số trang của mỗi quyển vở mỗi loại.
.........
---(Để xem tiếp nội dung của đề thi các em vui lòng xem tại online hoặc đăng nhập để tải về máy)---
Đề số 3
Bài 1: (4 Điểm)
Cho A = 7 + 73 + 75 + ... + 71999 Chứng minh rằng A chia hết cho 35.
Bài 2: (4 Điểm)
Tìm số nguyên tố p để p + 10 và p + 14 đều là các số nguyên tố.
Bài 3: (4 Điểm)
Cho \(\frac{m}{n} = 1 + \frac{1}{2} + \frac{1}{3} + ........... + \frac{1}{{1998}}\) với m, n là số tự nhiên.
Chứng minh rằng m chia hết cho 1999. Nêu bài toán tổng quát.
Bài 4: (4 Điểm)
Cho phân số \(A = \frac{{199919991999}}{{200020002000}}\) và phân số \(B = \frac{{1999}}{{2000}}\)
So sánh A và B.
.........
---(Để xem tiếp nội dung của đề thi các em vui lòng xem tại online hoặc đăng nhập để tải về máy)---
Đề số 4
Câu 1:Thực hiện các phép tính sau: (4 điểm)
a. \(\frac{{2181.729 + 243.81.27}}{{^{}{3^2}{{.9}^2}.234 + 18.54.162.9 + 723.729}}\)
b. \(\frac{1}{{1.2}} + \frac{1}{{2.3}} + \frac{1}{{3.4}} + \cdots + \frac{1}{{98.99}} + \frac{1}{{99.100}}\)
c. \(\frac{1}{{2{}^2}} + \frac{1}{{{3^2}}} + \frac{1}{{{4^2}}} + \cdots + \frac{1}{{{{100}^2}}} < 1\)
d. \(\frac{{{{5.4}^{15}} - {9^9} - {{4.3}^{20}}{{.8}^9}}}{{{{5.2}^9}{{.6}^{19}} - {{7.2}^{29}}{{.27}^6}}}\)
Câu 2: (2 điểm) Một quãng đường AB đi trong 4 giờ. Giờ đầu đi được \(\frac{1}{3}\) quãng đường AB. Giờ thứ 2 đi kém giờ đầu là \(\frac{1}{{12}}\) quãng đường AB, giờ thứ 3 đi kém giờ thứ 2 là \(\frac{1}{{12}}\) quãng đường AB. Hỏi giờ thứ tư đi mấy quãng đường AB?
........
---(Để xem tiếp nội dung của đề thi các em vui lòng xem tại online hoặc đăng nhập để tải về máy)---
Đề số 5
Bài 1( 8 điểm )
1. Tìm chữ số tận cùng của các số sau:
a) 571999
b) 931999
2. Cho A= 9999931999 - 5555571997. Chứng minh rằng A chia hết cho 5.
3 . Cho phân số \(\frac{a}{b}\) ( a < b) cùng thêm m đơn vị vào tử và mẫu thì phân số mới lớn hơn hay bé hơn \(\frac{a}{b}\)?
4. Cho số \(\overline {155*710*4*16} \) có 12 chữ số . chứng minh rằng nếu thay các dấu * bởi các chưc số khác nhau trong ba chữ số 1,2,3 một cách tuỳ thì số đó luôn chia hết cho 396.
..........
---(Để xem tiếp nội dung của đề thi các em vui lòng xem tại online hoặc đăng nhập để tải về máy)---
Trên đây là một phần nội dung tài liệu Bộ 5 đề thi chọn HSG môn Toán lớp 6 trường THCS Phú Lương. Để xem thêm nhiều tài liệu tham khảo hữu ích khác các em chọn chức năng xem online hoặc đăng nhập vào trang Chúng tôi để tải tài liệu về máy tính.
Hy vọng tài liệu này sẽ giúp các em học sinh ôn tập tốt và đạt thành tích cao trong học tập.
Ngoài ra các em có thể tham khảo thêm một số tư liệu cùng chuyên mục tại đây:
- Bộ 5 đề thi chọn HSG môn Toán lớp 7 Trường THCS Trung Hưng
- Bộ 5 đề thi chọn HSG môn Toán lớp 6 Trường THCS Phúc Lợi
Chúc các em học tập tốt !