TRƯỜNG THCS ĐÀO HỮU CẢNH | ĐỀ THI THỬ VÀO LỚP 10 NĂM 2021 MÔN TOÁN (Thời gian làm bài: 120 phút) |
Đề 1
Bài 1: Cho parabol (P): \(y=\frac{1}{2}{{x}^{2}}\) và đường thẳng (d):\(y=x+4\).
a) Vẽ (P) và (d) trên cùng hệ trục tọa độ.
b) Tìm tọa độ giao điểm của (P) và (d) bằng phép tính.
Bài 2: Cho phương trình: x2 – 4x – 5 = 0 .
Không giải phương trình hãy tính giá trị biểu thức :\({{x}_{1}}^{2}+{{x}_{2}}^{2}\)
Bài 3: Càng lên cao không khí càng loãng nên áp suất khí quyển càng giảm. Với những độ cao không lớn lắm thì ta có công thức tính áp suất khí quyển tương ứng với độ cao so với mực nước biển như sau:
Trong đó:
: Áp suất khí quyển (mmHg)
: Độ sao so với mực nước biển (m)
Ví dụ các khu vực ở Thành phố Hồ Chí Minh đều có độ cao sát với mực nước biển nên có áp suất khí quyển là .
a) Hỏi Thành phố Đà Lạt ở độ cao 1500m so với mực nước biển thì có áp suất khí quyển là bao nhiêu mmHg?
b) Dựa vào mối liên hệ giữa độ cao so với mực nước biển và áp suất khí quyển người ta chế tạo ra một loại dụng cụ đo áp suất khí quyển để suy ra chiều cao gọi là “cao kế”. Một vận động viên leo núi dùng “cao kế” đo được áp suất khí quyển là 540mmHg. Hỏi vận động viên leo núi đang ở độ cao bao nhiêu mét so với mực nước biển?
Bài 4 Một vé xem phim có giá 60.000 đồng. Khi có đợt giảm giá, mỗi ngày số lượng người xem tăng lên 50%, do đó doanh thu cũng tăng 25%. Hỏi giá vé khi được giảm là bao nhiêu?
Bài 5: Các ống hút nhựa thường khó phân hủy và gây hại cho môi trường. Mỗi ngày có 60 triệu ống hút thải ra môi trường gây hậu quả nghiêm trọng. Ngày nay người ta chủ động sản xuất các loại ống hút dễ phân hủy. Tại tỉnh Đồng Tháp có cơ sở chuyên sản xuất ống hút “thân thiện với môi trường” xuất khẩu ra thị trường thế giới và được nhiều nước ưa chuộng. Ống hút được làm từ bột gạo, các màu chiết xuất từ củ dền, lá dứa, bông sen, bông điên điển,…Một ống hút hình trụ, đường kính 12mm, bề dày ống 2mm, chiều dài ống 180mm. Em hãy tính xem để sản xuất mỗi ống thì thể tích bột gạo được sử dụng là bao nhiêu (Biết p ≈3,14)
Bài 6: Hiệp định Genève 1954 về chấm dứt chiến tranh ở Đông Dương đã chọn vĩ tuyến 17º Bắc, dọc sông Bến Hải – tỉnh Quảng Trị làm khu vực phi quân sự, phân định giới tuyến Bắc – Nam tạm thời cho Việt Nam. Và dòng sông Bến Hải chạy dọc vĩ tuyến 17 này đã thành nơi chia cắt đất nước trong suốt hơn 20 năm chiến tranh Việt Nam. Em hãy tính độ dài mỗi vòng kinh tuyến và độ dài cung kinh tuyến từ vĩ tuyến 17 đến xích đạo. Biết bán kính trái đất là 6400km.
Bài 7
Hải đăng Đá Lát là một trong 7 ngọn Hải đăng cao nhất Việt Nam, được đặt trên đảo Đá Lát ở vị trí cực Tây Quần đảo, thuộc xã đảo Trường Sa, huyện Trường Sa, tỉnh Khánh Hòa. Ngọn hải đăng được xây dựng năm 1994, cao 42 mét, có tác dụng chỉ vị trí đảo, giúp tàu thuyền hoạt động trong vùng biển Trường Sa định hướng và xác định được vị trí mình. Một người đi trên tàu đánh cá muốn đến ngọn hải đăng Đá Lát, người đó đứng trên mũi tàu cá và dùng giác kế đo được góc giữa mũi tàu và tia nắng chiếu từ đỉnh ngọn hải đăng đến tàu là 100
a) Tính khoảng cách từ tàu đến ngọn hải đăng. (làm tròn đến 1 chữ số thập phân)
b) Biết cứ đi 10 m thì tàu đó hao tốn hết 0,02 lít dầu. Hỏi tàu đó để đi đến ngọn hải đăng Đá Lát cần tối thiểu bao nhiêu lít dầu?
ĐÁP ÁN
Câu 1
a) Bảng giá trị đúng :
x | 4 | 2 | 0 | 2 | 4 |
\(y=\frac{1}{2}{{x}^{2}}\) | 8 | 2 | 0 | 2 | 8 |
x | 0 | 4 |
\(y=x+4\) | 4 | 0 |
Vẽ đúng
b). Phương trình hoành độ giao điểm (P) và (D):
\(\begin{array}{l}
\frac{1}{2}{x^2} = x + 4\\
\Leftrightarrow \frac{1}{2}{x^2} - x - 4 = 0\\
\Leftrightarrow {x^2} - 2x - 8 = 0\\
\Leftrightarrow {x_1} = 4;{x_2} = - 2\\
\Rightarrow {y_1} = 8;{y_2} = 2
\end{array}\)
(P) và (d) cắt nhau tại (4;8) và (–2;2)
Câu 2
x2– 4x – 5= 0
a.c < 0
Vậy pt luôn có 2 nghiệm. Theo hệ thức Viet, ta có:
\(\left\{ {\begin{array}{*{20}{c}}
{S = {x_1} + {x_2} = \frac{{ - b}}{a} = 4}\\
{P = {x_1}{x_2} = \frac{c}{a} = - 5}
\end{array}} \right.\)
\({{x}_{1}}^{2}+{{x}_{2}}^{2}={{\left( {{x}_{1}}+{{x}_{2}} \right)}^{2}}-2{{x}_{1}}{{x}_{2}}={{4}^{2}}+2.5=36\)
........
---(Nội dung đầy đủ, chi tiết phần đáp án của đề thi vui lòng xem tại online hoặc đăng nhập để tải về máy)---
Đề 2
Bài 1: Cho hàm số (P): và hàm số (D): \(\mathrm{y=3x}\mathsf{-4}\)
a) Vẽ (P) và (D) trên cùng hệ trục tọa độ.
b) Tìm các tọa độ giao điểm của (P) và (D) bằng phép tính.
Bài 2: Cho phương trình x2 – (m – 1) x + 2m – 6 = 0 (m là tham số)
a) Chứng tỏ phương trình luôn có nghiệm với mọi giá trị m.
b) Gọi x1, x2 là hai nghiệm của phương trình. Tìm m để phương trình có 2 nghiệm thỏa (x1 – 1)2 + (x2 – 1)2 = 18
Bài 3: Ông Tư dự định mua một trong hai loại xe máy như sau
Loại 1: Giá 23 triệu đồng, lượng xăng tiêu thụ là 60 km/lít.
Loại 2: Giá 26,5 triệu đồng, lượng xăng tiêu thụ là 64 km/lít
Giá trung bình mỗi lít xăng là 23 ngàn đồng. Ông tư dự định mua xe máy và mỗi năm ông đi khoảng 7.525 km.
a) Gọi T (triệu đồng) là chi phí của xe theo thời gian t (tính theo năm). Lập hàm số của T theo t của hai loại xe trên.
b) Với thời gian đi 10 năm thì nên chọn xe nào tiết kiệm hơn (Làm tròn đến hàng đơn vị)
Bài 4: Lực F ( tính bằng đơn vị N) của gió thổi vào cánh buồm tỷ lệ với vận tốc của gió (km/h) bằng công thức F = k.v2. Đồ thị của hàm số F đi qua điểm (5; 100).
a) Tìm hệ số k.
b) Cánh buồm chỉ chịu được lực tối đa là 3000N. Hỏi nếu vận tốc gió là 30 km/h thì thuyền có thể ra khơi được không?
Bài 5: Để đảm bảo dinh dưỡng trong bữa ăn hằng ngày thì mỗi gia đình 4 thành viên cần 900 đơn vị protêin và 400 đơn vị Lipit trong thức ăn hằng ngày. Mỗi kilôgam thịt bò chứa 800 đơn vị protêin và 200 đơn vị Lipit, còn mỗi kilôgam thịt heo chứa 600 đơn vị protêin và 400 đơn vị Lipit.
Giá thịt bò là 100 000 đồng/kg và thịt heo là 70 000 đồng/kg.
Hỏi cần mua bao nhiêu tiền thịt bò và thịt heo để đảm bảo dinh dưỡng hằng ngày cho 4 người?
Bài 6: Bác Tư mua 1 con heo và 1 con bò. Sau 1 thời gian, do heo mất giá nên ông bán giá 8 triệu đồng và bị lỗ 20% nhưng may mắn ông gỡ lại thiệt hại nhờ con bò lên giá nên ông bán với giá 18 triệu đồng và lời 20%. Hỏi sau khi bán con heo và con bò ông lời hay lỗ bao nhiêu tiền ?
Bài 7: Một cốc nước hình trụ cao 15cm, đường kính đáy là 6cm. Lượng nước ban đầu cao 10cm. Thả vào cốc 5 viên bi hình cầu cùng đường kính 2cm. Hỏi sau khi thả 5 viên bi mực nước cách miệng cốc bao nhiêu cm? (Làm tròn lấy 2 chữ số thập phân)
........
---(Nội dung đầy đủ, chi tiết phần đáp án của đề thi vui lòng xem tại online hoặc đăng nhập để tải về máy)---
Đề 3
Bài 1: Cho parabol (P) \(y=-{{x}^{2}}\) và đường thẳng (d) : \(y=x-2\)
a) Vẽ (P) và (d) trên cùng hệ trục tọa độ.
b) Tìm tọa độ giao điểm của (P) và (d) bằng phép toán.
Bài 2: Cho phương trình: x2 – mx – 1 = 0 (1) (x là ẩn số)
a) Chứng minh rằng phương trình (1) luôn có hai nghiệm trái dấu.
b) Gọi x1, x2 là các nghiệm của phương trình (1).
Tính giá trị của biểu thức: \(P=\frac{x_{1}^{2}+{{x}_{1}}-1}{{{x}_{1}}}-\frac{x_{2}^{2}+{{x}_{2}}-1}{{{x}_{2}}}\)
Bài 3: Thời gian t (tính bằng giây) từ khi một người bắt đầu nhảy bungee trên cao cách mặt nước d (tính bằng m) đến khi chạm mặt nước được cho bởi công thức: \(t=\sqrt{\frac{3d}{9,8}}\)
Tìm thời gian một người nhảy bungee từ vị trí cao cách mặt nước 108m đến khi chạm mặt nước?
Bài 4: Một cửa hàng thời trang nhập về 100 áo với giá vốn 300000 đồng/ 1 áo. Đợt một, cửa hàng bán hết 80 áo. Nhân dịp khuyến mãi, để bán hết phần còn lại, cửa hàng đã giảm giá 30% so với giá niêm yết ở đợt một. Biết rằng sau khi bán hết số áo của đợt nhập hàng này thì cửa hàng lãi 12300000 đồng.
a) Tính tổng số tiền cửa hàng thu về khi bán hết 100 áo?
b) Hỏi vào dịp khuyến mãi cửa hàng đó bán một chiếc áo giá bao nhiêu tiền?
Bài 5: Năm ngoái dân số hai tỉnh A và B tổng cộng là 3 triệu người. Theo thống kê thì năm nay tỉnh A tăng 2% còn tỉnh B tăng 1,8% nên tổng số dân tăng thêm của cả hai tỉnh là 0,0566 triệu người. Hỏi năm ngoái mỗi tỉnh dân số là bao nhiêu?
Bài 6: Cho đường tròn (O; R) có đường kính BC. Trên (O) lấy điểm A sao cho AB > AC. Vẽ các tiếp tuyến tại A và B của (O) cắt nhau tại S.
a). Chứng minh: tứ giác SAOB nội tiếp và SO \(\bot\) AB.
b). Kẻ đường kính AE của (O); SE cắt (O) tại D. Chứng minh: SB2 = SD.SE.
c). Gọi I là trung điểm của DE; K là giao điểm của AB và SE. Chứng minh: SD.SE = SK.SI
d). Vẽ tiếp tuyến tại E của (O) cắt tia OI tại F. Chứng minh: ba điểm A, B, F thẳng hàng.
Bài 7: Liễn nuôi cá được xem như một phần của mặt cầu. Lượng nước đổ vào liễn chiếm \(\frac{2}{3}\) thể tích của hình cầu. Hỏi cần phải có ít nhất bao nhiêu lít nước để thay nước ở liễn nuôi cá cảnh. Biết rằng đường kính của liễn là 22cm ( Kết quả làm tròn đến chữ số thập phân thứ 2)
........
---(Nội dung đầy đủ, chi tiết phần đáp án của đề thi vui lòng xem tại online hoặc đăng nhập để tải về máy)---
Đề 4
Câu 1. Cho hàm số (P): y = x2 và đường thẳng (d): y = x + 2.
a) Vẽ (P) trên hệ trục tọa độ Oxy.
b) Tìm tọa độ giao điểm của (P) và (d) bằng phép tính.
Câu 2. Cho phương trình: x2 + 5x + 2 = 0 có hai nghiệm x1; x2.
Không giải phương trình hãy tính giá trị của biểu thức sau: \(x_{1}^{3}+x_{2}^{3}\).
Câu 3. Bạn Phú dự định trong khoảng thời gian từ ngày 2 tháng 1 đến ngày 28 tháng 2 sẽ giải mỗi ngày 3 bài toán. Thực hiện đúng kế hoạch được một thời gian, vào khoảng cuối tháng 1 (tháng 1 có 31 ngày) thì Phú được nghỉ tết và bạn tạm nghỉ giải toán nhiều ngày liên tiếp. Sau tết, trong tuần đầu Phú chỉ giải được 14 bài; sau đó Phú cố gắng giải 4 bài mỗi ngày và đến 29 tháng 2 (năm 2020 tháng 2 có 29 ngày) thì Phú cũng hoàn thành kế hoạch đã định. Hỏi bạn Phú đã nghỉ giải toán ít nhất bao nhiêu ngày?
Câu 4. Qua nghiên cứu người ta nhận thấy rằng với mỗi người, trung bình nhiệt độ môi trường giảm đi 1°C thì lượng calo cần tăng thêm khoảng 30 calo. Tại 21°C một người làm việc cần sử dụng khoảng 3000 calo mỗi ngày. Biết rằng mối liên hệ giữa calo y (calo) và nhiệt độ x (°C) là một hàm số bậc nhất có dạng y = ax + b.
a) Xác định các hệ số a và b.
b) Nếu một người thợ làm việc trong một xưởng nung thép phải tốn 2400 calo trong một ngày. Hãy cho biết người thợ đó làm việc ở môi trường có nhiệt độ là bao nhiêu độ C?
Câu 5.
Một ô tô A khởi hành từ thành phố A đến thành phố B và một chiếc ô tô B khởi hành từ thành phố B đến thành phố A cùng một thời điểm đó. C là một ga nằm chính giữa quãng đường từ A đến B. Cả hai ô tô vẫn tiếp tục di chuyển sau khi ô tô A gặp ô tô B tại điểm vượt quá ga C một đoạn đường 150km. Tìm khoảng cách giữa thành phố A và thành phố B?
Câu 6. Bạn đang tìm kiếm 1 món đồ mà mọi người nhìn vào biết ngay bạn là một Ảo thuật gia thực sự? Đó là một chiếc nón bằng vải nỉ được may theo phong cách cao bồi. Chiếc mũ ảo thuật này chính là sản phẩm mà bất kỳ các nhà ảo thuật gia nào cũng đều đội khi biểu diễn. Ảo thuật gia gỡ chiếc nón xuống và bắt đầu tạo nên phép màu. Đầu tiên chiếc nón huyền bí bắn ra một loạt bông tuyết với một tiếng nổ lớn. Sau tiếng nổ là một ngọn lửa bốc cháy dữ dội từ bên trong chiếc mũ, và điều đặc biệt nhất chính là từ trong ngọn lửa, chú chim bồ câu xuất hiện một cách thật là thần kỳ. Không chỉ thế bạn còn có thể lấy ra thỏ, chim hoặc 1 số vật dụng bạn yêu thích. Đặc biệt chiếc mũ này còn là một đạo cụ thích hợp cho những ai diễn sân khấu.
Một chiếc mũ bằng vải của nhà ảo thuật với kích thước như hình vẽ. Hãy tính tổng diện tích vải cần để làm cái mũ đó. Biết rằng vành mũ hình tròn và ống mũ hình trụ.
Câu 7.
Một cái thùng có thể chứa được 14kg thanh long hoặc 21kg nhãn. Nếu chứa đầy thùng đó bằng cả thanh long và nhãn mà giá tiền của thanh long bằng giá tiền của nhãn thì số trái cây trong thùng là sẽ cân nặng 18kg và có giá trị là 480.000 đồng. Tìm giá tiền 1kg thanh long, 1kg nhãn.
........
---(Nội dung đầy đủ, chi tiết phần đáp án của đề thi vui lòng xem tại online hoặc đăng nhập để tải về máy)---
Trên đây là một phần nội dung tài liệu Bộ 4 đề thi thử vào lớp 10 môn Toán có đáp án Trường THCS Đào Hữu Cảnh. Để xem thêm nhiều tài liệu tham khảo hữu ích khác các em chọn chức năng xem online hoặc đăng nhập vào trang Chúng tôi để tải tài liệu về máy tính.
Hy vọng tài liệu này sẽ giúp các em học sinh ôn tập tốt và đạt thành tích cao trong học tập.
Ngoài ra các em có thể tham khảo thêm một số tư liệu cùng chuyên mục tại đây:
- Bộ 4 đề thi thử vào lớp 10 THPT môn Toán trường THCS Hương Lâm
- Bộ 4 đề thi thử vào lớp 10 THPT môn Toán trường THCS Hùng Sơn
Chúc các em học tập tốt!