Bộ 4 đề thi thử THPT QG năm 2021 môn Toán - Trường THPT Lý Tự Trọng

TRƯỜNG THPT LÝ TỰ TRỌNG

ĐỀ  THI THỬ THPT QUỐC GIA 2021

MÔN TOÁN

Thời gian: 90 phút

 

1. ĐỀ SỐ 1

Câu 1 Một vật chuyển động thẳng xác định bởi phương trình \(S = {t^3} - 3{t^2} - 9t\) trong đó t được tính bằng giây và S được tính bằng mét. Tính vận tốc của vật tại thời điểm gia tốc triệt tiêu?

A. \(11\,\,m/s\)

B. \(12\,\,m/s\)

C. \( - 11\,m/s\)

D. \( - 12\,\,m/s\)

Câu 2 Đồ thị hàm số \(y = \dfrac{{2x - 3}}{{x - 1}}\) có bao nhiêu đường tiệm cận?

A. 1                             B. 0

C. 2                             D. 3

Câu 3 Trong các khẳng định sau khẳng định nào sai?

A.  Biến cố là tập con của không gian mẫu

B. Gọi \(P\left( A \right)\) là xác suất của biến cố A ta luôn có \(0 \le P\left( A \right) \le 1\)

C. Không gian mẫu là tập tất cả các kết quả có thể xảy ra của phép thử

D. Ký hiệu \(\Phi \) là biến cố không thể ta có xác suất của biến cố \(\Phi \) là \(P\left( \Phi  \right) = 1\)

Câu 4 Khai triển \({\left( {1 + 2x} \right)^{10}} = {a_0} + {a_1}x + {a_2}{x^2} + ... + {a_{10}}{x^{10}}\). Tìm \({a_7}\).

A. 120                         B. 15360

C. 604800                   D. 960

Câu 5 Thầy giáo có ba quyển sách Toán khác nhau cho ba bạn mượn (mỗi bạn mượn một quyển). Sang tuần sau thầy giáo thu lại và tiếp tục cho ba bạn mượn ba quyển đó. Hỏi có bao nhiêu cách cho mượn sách mà không bạn nào phải mượn quyển đã đọc?

A. 6                             B. 2

C. 8                             D. 11

Câu 6 Tìm tất cả những giá trị thực của m để hàm số \(y = {x^3} - 3m{x^2} + 3\left( {5m - 6} \right)x + 5m - 7\) đồng biến trên \(\mathbb{R}\)

A. \(m \in \left[ { - 3; - 2} \right]\)

B. \(m \in \left( {1;6} \right)\)

C. \(m \in \left[ {2;3} \right]\)

D. \(m \in \left( {2;3} \right)\)

Câu 7 Cho hàm số \(f\left( x \right) = {\cos ^2}3x\). Tìm \(f'\left( x \right)\)

A.  \(f'\left( x \right) = 3\sin 6x\)

B. \(f'\left( x \right) = \sin 6x\)

C. \(f'\left( x \right) =  - 3\sin 6x\)

D. \(f'\left( x \right) =  - \sin 6x\)

Câu 8 Trong các khẳng định sau khẳng định nào sai?

A. Hình chóp đều là hình chóp có đáy là đa giác đều, các cạnh bên bằng nhau

B. Hình chóp tam giác đều là tứ diện đều

C. Hình chóp đều là hình chóp có đáy là đa giác đều, chân đường cao hạ từ đỉnh xuống đáy trùng với tâm đường tròn ngoại tiếp đa giác đáy

D. Tứ diện đều là hình chóp đều

Câu 9 Cho lăng trụ đều \(ABC.A'B'C'\) có cạnh đáy bằng a, thể tích bằng \(\dfrac{{3{a^3}}}{4}\). Tính \(AB'\)

A. \(3a\sqrt 3 \)

B. \(2a\sqrt 7 \)
C. \(2a\)           

D. \(a\sqrt 3 \)

Câu 10 Trong các khẳng định sau khẳng định nào đúng

A. Cả ba đáp án còn lại đều đúng

B. Phương trình \(\sin 2x = a\) có nghiệm với mọi \(a \in \left[ { - 2;2} \right]\)

C. Phương trình \(\tan x = a\) và phương trình \(\cot x = a\) có nghiệm với mọi \(a \in \mathbb{R}\)

D. Phương trình \(\cos x = a\) có nghiệm với mọi \(a \in \left[ { - 2;2} \right]\)

ĐÁP ÁN

1.D

2.C

3.D

4.B

5.B

6.C

7.C

8.B

9.C

10.C

{-- Nội dung đề, đáp án từ câu 11-50 các em vui lòng xem ở phần xem online hoặc tải về --}

2. ĐỀ SỐ 2

Câu 1 Tìm tất cả các giá trị thực của m để hàm số \(y = {x^4} + 2\left( {{m^2} - 9} \right){x^2} + 5m + 2\) có cực đại, cực tiểu

A. \(m \in \left( { - 3;3} \right)\)        

B.\(m \in \left[ { - 3;3} \right]\)

C.\(m \in \left( { - \infty ; - 3} \right) \cup \left( {3; + \infty } \right)\)

D. \(m \in \left( { - 9;9} \right)\)

Câu 2 Phương trình \(\sin x = 1\) có nghiệm là:

A. \(x = k2\pi \)

B. \(x = \dfrac{\pi }{2} + k2\pi \)

C. \(x =  - \dfrac{\pi }{2} + k2\pi \)

D. \(x = \dfrac{\pi }{2} + k\pi \)

Câu 3 Giải bóng đá V-league Việt Nam mùa bóng 2017 – 2018 có 14 đội tham gia thi đấu theo hình thức cứ hai đội bất kỳ gặp nhau hai lần, một lần trên sân nhà và một lần trên sân khách. Hỏi mùa giải 2017 – 2018 V-league Việt Nam có bao nhiêu trận đấu?

A. 140                         B. 182

C. 91                           D. 70

Câu 4 Trên đoạn \(\left[ { - \pi ;2\pi } \right]\) phương trình \(\sqrt 3 \tan x - 1 = 0\) có bao nhiêu nghiệm?

A. 4                             B. 3

C. 1                             D. 2

Câu 5 Cho \(\alpha \) là một số thực tùy ý. Trong các khẳng định sau khẳng định nào đúng?

A. Hàm số \(y = {x^\alpha }\)  có đạo hàm với mọi \(x \in \mathbb{R}\) và \(\left( {{x^\alpha }} \right)' = \alpha {x^{\alpha  - 1}}\)

B. Hàm số \(y = {x^\alpha }\) có đạo hàm với mọi \(x \in \left( {0; + \infty } \right)\) và \(\left( {{x^\alpha }} \right)' = \alpha {x^{\alpha  - 1}}\)

C. Hàm số \(y = {x^\alpha }\) có đạo hàm với mọi \(x \in \left( {0; + \infty } \right)\) và \(\left( {{x^\alpha }} \right)' = \dfrac{1}{\alpha }{x^{\alpha  - 1}}\)

D. Hàm số \(y = {x^\alpha }\) có đạo hàm với mọi \(x \in R\) và \(\left( {{x^\alpha }} \right)' = \alpha {x^{\alpha  + 1}}\)

Câu 6 Trong các khẳng định sau khẳng định nào đúng?

A. Phép tịnh tiến, phép quay là phép dời hình

B. Phép vị tự là phép dời hình           

C. Phép vị tự là phép đồng dạng

D. Cho phép biến hình F thực hiện liên tiếp phép tịnh tiến véc tơ \(\overrightarrow v \)và phép vị tự tâm O tỷ số k ta có F là phép đồng dạng

Câu 7 Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như hình vẽ:

Trong các khẳng định sau, khẳng định nào đúng?

A. Hàm số nghịch biến trên \(\left( { - \infty ; - 3} \right) \cup \left( {2; + \infty } \right)\)

B. Hàm số có đạt cực đại tại \(x =  - 3\)

C. Hàm số đạt cực tiểu tại \( - 2\)

D. Hàm số có giá trị cực đại bằng 3

Câu 8 Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành tâm O, M nằm giữa BO. Mặt phẳng \(\left( \alpha  \right)\) qua M song song với SB và AC. Thiết diện của mặt phẳng \(\left( \alpha  \right)\) với hình chóp là:

A. Ngũ giác

B. Tam giác

C. Hình bình hành

D. Hình thang không phải hình bình hành

Câu 9 Cho hàm số \(f\left( x \right) = \dfrac{{x - 1}}{{x + 1}}\). Tìm \(f'\left( x \right)\)

A.\(f'\left( x \right) =  - \dfrac{1}{{{{\left( {x + 1} \right)}^2}}}\)

B.\(f'\left( x \right) =  - \dfrac{2}{{{{\left( {x + 1} \right)}^2}}}\)

C.\(f'\left( x \right) = \dfrac{1}{{{{\left( {x + 1} \right)}^2}}}\)

D. \(f'\left( x \right) = \dfrac{2}{{{{\left( {x + 1} \right)}^2}}}\)

Câu 10 Tập xác định của hàm số \(y = {\left( {2018 - x} \right)^{\dfrac{1}{5}}}\) là:

A.\(D = \left( { - \infty ;2018} \right]\)

B.\(D = \left( { - \infty ;2018} \right)\)

C.\(D = \left( {0;2018} \right)\)

D. \(D = \left( { - \infty ; + \infty } \right)\)

ĐÁP ÁN

1.D

2.C

3.D

4.D

5.A

6.D

7.A

8.B

9.B

10.C

{-- Nội dung đề, đáp án từ câu 11-50 các em vui lòng xem ở phần xem online hoặc tải về --}

3. ĐỀ SỐ 3

Câu 1 Hình vẽ dưới đây là đồ thị của hàm số nào trong bốn hàm số sau:

A. \(y =  - {x^3} + 3{x^2} + 1\)

B. \(y = 2{x^3} - 6{x^2} + 1\)

C. \(y =  - 2{x^3} + 6{x^2} + 1\)

D. \(y = {x^3} - 3{x^2} + 1\)

Câu 2 Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật, \(AB = a,AD = a\sqrt 3 \) và SA vuông góc với mặt phẳng \(\left( {ABCD} \right),SC\) hợp với mặt phẳng \(\left( {SAD} \right)\) một góc \(\alpha \). Tính thể tích khối chóp \(S.ABCD\). Biết \(\cos \alpha  = \dfrac{{2\sqrt 5 }}{5}\).

A.\(V = \dfrac{{{a^3}\sqrt 3 }}{6}\)             

B. \(V = \dfrac{{{a^3}}}{3}\)

C.\(V = \dfrac{{{a^3}\sqrt 3 }}{3}\)

D. \(V = \dfrac{{{a^3}\sqrt 3 }}{2}\)

Câu 3 Tính thể tích của khối hộp chữ nhật \(ABCD.A'B'C'D'\). Biết \(AB = 3m,AD = 5m,AA' = 6m\)

A.\(30{m^2}\)             B.\(90{m^2}\)

C.\(30{m^3}\)             D. \(90{m^3}\)

Câu 4 Trong mặt phẳng với hệ tọa độ \(Oxy\) cho đường tròn \(\left( C \right):{x^2} + {y^2} - 2x - 4y + 4 = 0\) và đường tròn \(\left( {C'} \right):{x^2} + {y^2} + 6x + 4y + 4 = 0\). Tìm tâm vị tự của hai đường tròn

A.\(I\left( {1;0} \right)\) và \(J\left( {4;3} \right)\)

B.\(I\left( { - 1; - 2} \right)\) và \(J\left( {3;2} \right)\)

C. \(I\left( {1;2} \right)\) và \(J\left( { - 3; - 2} \right)\)

D. \(I\left( {0;1} \right)\) và \(J\left( {3;4} \right)\)

Câu 5 Cho hình chóp \(S.ABC\) đáy \(ABC\)là tam giác vuông tại \(A,AB = a,AC = a\sqrt 3 \). Tam giác SBC đều nằm trong mặt phẳng vuông góc với đáy. Tính thể tích khối chóp S.ABC

A. \(V = \dfrac{{{a^3}}}{2}\)

B. \(V = \dfrac{{{a^3}}}{6}\)

C. \(V = \dfrac{{{a^3}\sqrt 3 }}{6}\)

D. \(V = \dfrac{{{a^3}\sqrt 3 }}{2}\)

Câu 6 Tìm tất cả các giá trị thực của m để hàm số \(y = \dfrac{1}{3}{x^3} - 2{x^2} + \left( {m + 5} \right)x + 2m - 5\) đồng biến trên khoảng \(\left( {3; + \infty } \right)\)

A. \(m \le 2\)

B. \(m >  - 2\)

C. \(m < 2\)

D. \(m \ge  - 2\)

Câu 7 Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật \(AB = a,AD = a\sqrt 3 ,SA = 2a,SA\) vuông góc với đáy \(\left( {ABCD} \right)\). Gọi M là trung điểm \(SC,\left( \alpha  \right)\) qua M vuông góc với SC chia khối chóp S.ABCD thành hai phần. Tính thể tích khối đa diện không chứa đỉnh S.

A. \(V = \dfrac{{46{a^3}\sqrt 3 }}{{105}}\)

B. \(V = \dfrac{{8{a^3}\sqrt 3 }}{{35}}\)     

C. \(V = \dfrac{{58{a^3}\sqrt 3 }}{{105}}\)

D. \(V = \dfrac{{46{a^3}\sqrt 3 }}{{35}}\)

Câu 8 Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như hình vẽ:

A. 5                             B. 4

C. 2                             D. 3

Câu 9 Họ đường cong \(\left( {{C_m}} \right):y = \left( {{m^2} + 2m} \right){x^3}\)\(\, - 5\left( {{m^2} + 2m - 1} \right){x^2}\)\(\, + 3\left( {{m^2} + 2m + 2} \right) + {\left( {m + 1} \right)^2} + 1\) có bao nhiêu điểm cố định?

A. 2                             B. 3

C. 0                             D. 3.

Câu 10 Tính tổng các nghiệm của phương trình \(8\cos x.\cos 2x.\left( {2{{\cos }^2}2x - 1} \right) = 1\) trên đoạn \(\left[ { - \pi ;2\pi } \right]\)

A.\(\dfrac{{788\pi }}{{63}}\)

B. \(\dfrac{{536\pi }}{{63}}\)

C. \(\dfrac{{662\pi }}{{63}}\)

D. \(4.\dfrac{{914\pi }}{{63}}\)

ĐÁP ÁN

1.D

2.C

3.D

4.D

5.A

6.D

7.A

8.B

9.B

10.C

{-- Nội dung đề, đáp án từ câu 11-50 các em vui lòng xem ở phần xem online hoặc tải về --}

4. ĐỀ SỐ 4

Câu 1 Cho tam giác đều ABC có cạnh bằng 100. Người ta dựng một hình chữ nhật MNPQ có cạnh MN nằm trên cạnh BC, hai đỉnh P và Q theo thứ tự nằm trên hai cạnh AC và AB của tam giác. Tìm diện tích lớn nhất của hình chữ nhật MNPQ

A. \(1250\sqrt 3 \)

B. \(\dfrac{{625\sqrt 3 }}{2}\)

C. \(\dfrac{{625\sqrt 3 }}{4}\)

D. \(625\sqrt 3 \)

Câu 2 Tìm tất cả những giá trị của m để hàm số \(y = \dfrac{{\cot 2x + m + 2}}{{\cot 2x - m}}\) đồng biến trên \(\left( {\dfrac{\pi }{6};\dfrac{\pi }{4}} \right)\)

A. \(m \in \left( { - \infty ; - 1} \right)\)

B. \(m \in \left( { - 1; + \infty } \right)\)

C. \(m \in \left( { - 1;0} \right) \cup \left( {\dfrac{{\sqrt 3 }}{3}; + \infty } \right)\)

D. \(m \in \left( { - \infty ;0} \right) \cup \left( {\dfrac{{\sqrt 3 }}{3}; + \infty } \right)\)

Câu 3 Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ. Tìm tất cả những giá trị thực của m để phương trình  \(\left| {f\left( x \right)} \right| = m\) có bốn nghiệm phân biệt

A. \(m \in \left( {1;3} \right)\)

B. \(m \in \left( {1; + \infty } \right)\)

C. \(m \in \left( {0;3} \right)\)

D. \(m \in \left( {\dfrac{1}{2};\dfrac{3}{2}} \right)\)

Câu 4 Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và \(D,AB = AD = 2a,CD = a\). Gọi I là trung điểm cạnh AD, biết hai mặt phẳng \(\left( {SBI} \right),\left( {SCI} \right)\) cùng vuông góc với đáy và thể tích khối chóp S.ABCD bằng \(\dfrac{{3\sqrt {15} {a^3}}}{5}\). Tính góc giữa hai mặt phẳng \(\left( {SBC} \right),\left( {ABCD} \right)\)

A. \({36^o}\)                           B. \({45^o}\)

C. \({60^o}\)                           D. \({30^o}\)

Câu 5 Tìm tất cả những giá trị thực của m để hàm số \(y = {x^3} - \left( {2m - 1} \right){x^2} \)\(\,+ \left( {2{m^2} - 3m + 1} \right)x - 2{m^2} + 5m - 3\) có cực đại, cực tiểu và các giá trị cực trị trái dấu

A. \(m \in \left( { - 1;\dfrac{3}{2}} \right) \cup \left( {\dfrac{3}{2};2} \right)\)

B. \(m \in \left( {1;2} \right)\)                                    

C. \(m \in \left( {1;\dfrac{3}{2}} \right) \cup \left( {\dfrac{3}{2};2} \right)\)

D. \(m \in \left( { - \infty ;1} \right) \cup \left( {2; + \infty } \right)\)

Câu 6 Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh a. E là điểm đối xứng của D qua trung điểm SA, M là trung điểm của AE, N là trung điểm của BC. Tính theo a khoảng cách giữa hai đường thẳng MN, AC

A.\(\dfrac{{a\sqrt 2 }}{4}\)

B.\(\dfrac{{a\sqrt 3 }}{6}\)

C.\(\dfrac{{a\sqrt 2 }}{3}\)

D.\(\dfrac{{a\sqrt 3 }}{2}\)

Câu 7 Tính thể tích V của khối tứ diện ABCD có \(AB = CD = 3\sqrt 5 ,BC = AD = \sqrt {61} ,\) \(AC = BD = \sqrt {34} \)

A. 30 (đvtt)

B. 60 (đvtt)

C. 15 (đvtt)

D. 90 (đvtt)

Câu 8 Gọi A là tập tất cả các số tự nhiên có ba chữ số đôi một khác nhau được lập từ các chữ số \(0,1,2,3,4,5,6\). Lấy ngẫu nhiên một số từ tập A. Tính xác suất để số lấy được là một số chia hết cho 6.

A. \(\dfrac{{11}}{{45}}\)                                B. \(\dfrac{{17}}{{45}}\)

C. \(\dfrac{{13}}{{60}}\)                                D. \(\dfrac{2}{9}\)

Câu 9 Cho hình chóp S.ABCD có \(SA = x\), các cạnh còn lại đều bằng 18. Tính giá trị lớn nhất của thể tích khối chóp S.ABCD

A.\(648\sqrt 2 \) (đvtt)

B. 1458 (đvtt)

C. 8748 (đvtt)

D.\(243\sqrt {11} \) (đvtt)

Câu 10 Cho lăng trụ \(ABC.AB'C'\) có \(AA' = a\), góc giữa cạnh bên và mặt phẳng đáy bằng \({60^o}\). Tam giác ABC vuông tại C và góc \(\widehat {BAC} = {60^o}\). Hình chiếu vuông góc của \(B'\) lên mặt phẳng \(\left( {ABC} \right)\) trùng với trọng tâm tam giác ABC. Tính thể tích khối tứ diện \(A'ABC\) theo a.

A.\(\dfrac{{9{a^3}}}{{208}}\)           

B.\(\dfrac{{3{a^3}}}{{208}}\)           

C.\(\dfrac{{27{a^3}}}{{208}}\)

D.\(\dfrac{{9{a^3}}}{{104}}\)

ĐÁP ÁN

1.A

2.A

3.A

4.C

5.C

6.A

7.A

8.C

9.B

10.A

{-- Nội dung đề, đáp án từ câu 11-50 các em vui lòng xem ở phần xem online hoặc tải về --}

Trên đây là trích dẫn 1 phần nội dung tài liệu Bộ 4 đề thi thử THPT QG năm 2021 môn Toán - Trường THPT Lý Tự Trọng. Để xem toàn bộ nội dung các em đăng nhập vào trang Chúng tôi để tải tài liệu về máy tính.

Hy vọng tài liệu này sẽ giúp các em học sinh ôn tập tốt và đạt thành tích cao trong học tập .

Các em quan tâm có thể tham khảo thêm các tài liệu cùng chuyên mục:

​Chúc các em học tập tốt !

Tham khảo thêm

Bình luận

Có Thể Bạn Quan Tâm ?