Bài 9: Biến đổi các biểu thức hữu tỉ và Giá trị của phân thức

Với bài học này, chúng ta sẽ làm quen với Biến đổi các biểu thức hữu tỉ, Giá trị của phân thức. Đây là bài học giúp các em làm quen với biểu thức hữu tỉ và tính toán giá trị của một phân thức.

Tóm tắt lý thuyết

Kiến thức cần nhớ:

Ta có thể biến đổi một biểu thức hữu tỉ thành một phân thức nhờ các quy tắc của các phép cộng trừ, nhân, chia phân thức.

Trước khi làm bài toán liên quan đến giá trị phân thức cần tìm điều kiện của biến để giá trị tương ứng của mẫu thức khác 0, từ đó giá trị của phân thức mới được xác định.

Bài tập minh họa

 
 

Bài 1: Biến đổi các biểu thức sau thành phân thức:

a.\(1 - \frac{x}{{1 - \frac{x}{{x + 1}}}}\)

b.\(\frac{{1 - \frac{2}{{x + 1}}}}{{1 - \frac{{{x^2} - 2}}{{{x^2} - 1}}}}\)

Hướng dẫn

a.

\(\begin{array}{l} 1 - \frac{x}{{1 - \frac{x}{{x + 1}}}}\\ = 1 - \left[ {x:\left( {1 - \frac{x}{{x + 1}}} \right)} \right]\\ = 1 - \left[ {x:\left( {\frac{{x + 1}}{{x + 1}} - \frac{x}{{x + 1}}} \right)} \right]\\ = 1 - \left[ {x:\frac{1}{{x + 1}}} \right]\\ = 1 - x\left( {x + 1)} \right) \end{array}\)

b.

\(\begin{array}{l} \frac{{1 - \frac{2}{{x + 1}}}}{{1 - \frac{{{x^2} - 2}}{{{x^2} - 1}}}}\\ = \left( {1 - \frac{2}{{x + 1}}} \right):\left( {1 - \frac{{{x^2} - 2}}{{{x^2} - 1}}} \right)\\ = \left( {\frac{{x + 1}}{{x + 1}} - \frac{2}{{x + 1}}} \right):\left( {\frac{{{x^2} - 1}}{{{x^2} - 1}} - \frac{{{x^2} - 2}}{{{x^2} - 1}}} \right)\\ = \left( {\frac{{x + 1 - 2}}{{x + 1}}} \right):\left( {\frac{{{x^2} - 1 - {x^2} + 2}}{{{x^2} - 1}}} \right)\\ = \frac{{x - 1}}{{x + 1}}:\frac{1}{{{x^2} - 1}}\\ = \frac{{x - 1}}{{x + 1}}.\left( {x - 1} \right)\left( {x + 1} \right)\\ = {\left( {x - 1} \right)^2} \end{array}\)

Bài 2: Tìm điều kiện xác định của các phân thức sau:

a. \(\frac{{4x}}{{3x - 6}}\) 

b. \(\frac{5}{{{x^2} - 2x}}\)

c.\(\frac{{5x + y}}{{{x^2} - 4{y^2}}}\)

Hướng dẫn

a.

\(\frac{{4x}}{{3x - 6}}\)          

ĐKXĐ:

\(\begin{array}{l} 3x - 6 \ne 0\\ \Rightarrow x \ne 2 \end{array}\)

b.

\(\frac{5}{{{x^2} - 2x}}\)        

ĐKXĐ:

\(\begin{array}{l} {x^2} - 2x \ne 0{\rm{ }}\\ \Leftrightarrow x\left( {x - 2} \right) \ne 0\\ \Leftrightarrow x \ne 0;2 \end{array}\)

 c.

\(\frac{{5x + y}}{{{x^2} - 4{y^2}}}\)

ĐKXĐ:

\(\begin{array}{l} {x^2} - 4{y^2} \ne 0{\rm{ }}\\ \Leftrightarrow \left( {x - 2y} \right)\left( {x + 2y} \right) \ne 0\\ \Leftrightarrow x \ne \pm 2y \end{array}\)

Bài 3: Tính giá trị biểu thức A tại x=-8

\(A = \frac{{3{x^2} - x}}{{9{x^2} - 6x + 1}}\)

Hướng dẫn

Ta có:

\(\begin{array}{l} A = \frac{{3{x^2} - x}}{{9{x^2} - 6x + 1}}\\ {\rm{ }} = \frac{{x\left( {3x - 1} \right)}}{{{{\left( {3x - 1} \right)}^2}}} \end{array}\)

ĐKXĐ:

\(x \ne \frac{1}{3}\)

Tại \(x = - 8\) ta có:

\(\begin{array}{l} \frac{x}{{3x - 1}}\\ = \frac{{ - 8}}{{3.\left( { - 8} \right) - 1}}\\ = \frac{8}{{25}} \end{array}\)

 

3. Luyện tập Bài 9 Toán 8 tập 1

Qua bài giảng Biến đổi các biểu thức hữu tỉ và Giá trị của phân thức này, các em cần hoàn thành 1 số mục tiêu mà bài đưa ra như : 

  • Thực hiên được biến đổi các biểu thức và tính giá trị của phân thức
  • Vận dụng được kiến thức đã học để giải các bài toán liên quan

3.1 Trắc nghiệm về Biến đổi các biểu thức hữu tỉ và Giá trị của phân thức

Các em có thể hệ thống lại nội dung kiến thức đã học được thông qua bài kiểm tra Trắc nghiệm Toán 8 Bài 9 cực hay có đáp án và lời giải chi tiết. 

Câu 2- Câu 5: Xem thêm phần trắc nghiệm để làm thử Online 

3.2. Bài tập SGK về Biến đổi các biểu thức hữu tỉ và Giá trị của phân thức

Các em có thể xem thêm phần hướng dẫn Giải bài tập Toán 8 Bài 9 để giúp các em nắm vững bài học và các phương pháp giải bài tập.

Bài tập 46 trang 57 SGK Toán 8 Tập 1

Bài tập 47 trang 57 SGK Toán 8 Tập 1

Bài tập 48 trang 58 SGK Toán 8 Tập 1

Bài tập 49 trang 58 SGK Toán 8 Tập 1

4. Hỏi đáp Bài 9 Chương 2 Đại số 8 tập 1

Trong quá trình học tập nếu có thắc mắc hay cần trợ giúp gì thì các em hãy comment ở mục Hỏi đáp, Cộng đồng Toán Chúng tôi sẽ hỗ trợ cho các em một cách nhanh chóng!

Chúc các em học tập tốt và luôn đạt thành tích cao trong học tập!

Tham khảo thêm

Bình luận

Có Thể Bạn Quan Tâm ?