Nội dung bài học sẽ giúp các em nắm được khái niệm, cách xác định góc giữa hai mặt phẳng, mối liên hệ của diện tích đa giác và hình chiếu của nó, các điều kiện để hai mặt phẳng vuông góc nhau. Bên cạnh đó là các ví dụ minh họa sẽ giúp các em hình thành các kĩ năng giải bài tập liên quan đến xác định góc giữa hai mặt phẳng, chứng minh hai mặt phẳng vuông góc,...
Tóm tắt lý thuyết
1.1. Góc giữa hai mặt phẳng
a) Định nghĩa
Góc giữa hai mặt phẳng là góc giữa hai đường thẳng lần lượt vuông góc với hai mặt phẳng đó.
Nhận xét: Nếu hai mặt phẳng song song hoặc trùng nhauthì ta nói rằng góc giữa hai mặt phẳng đó bằng 0o.
b) Cách xác định góc giữa hai mặt phẳng cắt nhau:
Cho hai mặt phẳng (P) và (Q): \((P) \cap \left( Q \right) = c\)
Lấy I bất kì thuộc c.
Trong (P) qua I kẻ \(a \bot c\).
Trong (Q) qua I kẻ \(b \bot c\).
Khi đó góc giữa hai mặt phẳng (P), (Q) là góc giữa hai đường thẳng a và b.
c) Diện tích hình chiếu của một đa giác
Với S là diện tích đa giác nằm trong (P), S’ là diện tích hình chiếu vuông góc của đa giác đó trên (Q), \(\varphi\) là góc giữa (P) và (Q) ta có: \(S'=S.\cos \varphi\).
1.2. Hai mặt phẳng vuông góc
a) Định nghĩa
Hai mặt phẳng được gọi là vuông góc với nhau nếu góc giữa chúng bằng 90o.
b) Các định lý
- Định lý 1: Nếu một mặt phẳng chứa một đường thẳng vuông góc với một mặt phẳng khác thì hai mặt phẳng đó vuông góc với nhau.
\(\left\{ \begin{array}{l} a \bot mp(P)\\ a \subset mp(Q) \end{array} \right. \Rightarrow mp(Q) \bot mp(P)\)
- Hệ quả 1: Nếu hai mặt phẳng (P) và (Q) vuông góc với nhau thì bất cứ đường thẳng a nào nằm trong (P), vuông góc với giao tuyến của (P) và (Q) đều vuông góc với mặt phẳng (Q).
\(\left\{ \begin{array}{l} (P) \bot (Q)\\ (P) \cap (Q) = d\\ a \subset (P),a \bot d \end{array} \right. \Rightarrow a \bot (Q)\)
- Hệ quả 2: Nếu hai mặt phẳng (P) và (Q) vuông góc với nhau và A là một điểm trong (P) thì đường thẳng a đi qua điểm A và vuông góc với (Q) sẽ nằm trong (P).
\(\left\{ \begin{array}{l} (P) \bot (Q)\\ A \in (P)\\ A \in a\\ a \bot (Q) \end{array} \right. \Rightarrow a \subset (P)\)
- Hệ quả 3: Nếu hai mặt phẳng cắt nhau và cùng vuông góc với mặt phẳng thứ ba thì giao tuyến của chúng vuông góc với mặt phẳng thứ ba.
\(\left\{ \begin{array}{l} (P) \cap (Q) = a\\ (P) \bot (R)\\ (Q) \bot (R) \end{array} \right. \Rightarrow a \bot (R)\)
1.3. Hình lăng trụ đứng, hình hộp chữ nhật, hình lập phương
a) Hình lăng trụ đứng
Định nghĩa: Hình lăng trụ đứng là hình lăng trụ có cạnh bên vuông góc với đáy.
Nhận xét: Các mặt bên của hình lăng trụ đứng là hình chữ nhật và vuông góc với mặt đáy.
b) Hình lăng trụ đều
Định nghĩa: Hình lăng trụ đều là hình lăng trụ đứng có đáy là đa giác đều.
Nhận xét: Các mặt bên của hình lăng trụ đều là những hình chữ nhật bằng nhau và vuông góc với mặt đáy.
c) Hình hộp đứng
Định nghĩa: Hình hộp đứng là hình lăng trụ đứng có đáy là hình bình hành.
Nhận xét: Trong hình hộp đứng bốn mặt bên đều là hình chữ nhật.
d) Hình hộp chữ nhật
Định nghĩa: Hình hộp chữ nhật là hình hộp đứng có đáy là hình chữ nhật.
Nhận xét: Tất cả 6 mặt của hình hộp chữ nhật đều là hình chữ nhật.
e) Hình lập phương
Định nghĩa: Hình lập phương là hình hộp chữ nhật có tất cả các cạnh bằng nhau.
1.4. Hình chóp đều và hình chóp cụt đều
a) Hình chóp đều
Định nghĩa: Một hình chóp được gọi là hình chóp đều nếu đáy của nó là đa giác đều và các cạnh bên bằng nhau.
Nhận xét:
+ Đường vuông góc với mặt đáy kẻ từ đỉnh gọi là đường cao của hình chóp.
+ Một hình chóp là hình chóp đều đáy của nó là đa giác đều và chân đường cao của hình chóp trùng với tâm của đáy.
+ Một hình chóp là hình chóp đều đáy của nó là đa giác đều và các cạnh bên tạo voéi mặt đáy các góc bằng nhau.
b) Hình chóp cụt
Định nghĩa: Khi cắt hình chóp đều bởi 1 mặt phẳng song song với đáy để được 1 hình chóp cụt thì hình chóp cụt đó được gọi là hình chóp cụt đều.
Nhận xét:
- Hai đáy của hình chóp cụt đều là 2 đa giác đều đồng dạng với nhau.
- Đoạn nối tâm 2 đáy được gọi là đường cao của hình chóp cụt đều.
- Trong hình chóp cụt đều các mặt bên là những hình thang cân bằng nhau.
Bài tập minh họa
Ví dụ 1:
Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a. Tính số đo của góc giữa (BA’C) và (DA’C).
Hướng dẫn giải:
Kẻ \(BH \bot A'C,{\rm{ (H}} \in {\rm{A'C)}}\) (1).
Mặt khác: \(BD \bot AC{\rm{ (gt)}}\)
\(AA' \bot (ABCD) \Rightarrow AA' \bot BD{\rm{ }}\)
\(\Rightarrow BD \bot (ACA') \Rightarrow BD \bot A'C\) (2)
Từ (1) (2) suy ra:
\(A'C \bot (BDH) \Rightarrow A'C \bot DH\)
Do đó: \((\widehat {(BA'C),(DA'C)}) = (\widehat {HB,HD})\)
Xét tam giác BCA' ta có:
\(\frac{1}{{B{H^2}}} = \frac{1}{{B{C^2}}} + \frac{1}{{BA{'^2}}} = \frac{3}{{2{a^2}}} \Rightarrow BH = a.\sqrt {\frac{2}{3}} \Rightarrow DH = a.\sqrt {\frac{2}{3}}\)
Ta có:
\(\cos \widehat {BHD} = \frac{{2B{H^2} - B{D^2}}}{{2B{H^2}}} = - \frac{1}{2} \Rightarrow \widehat {BHD} = {120^0}>90^0\)
Vậy: \(\widehat {((BA'C),(DA'C))} =180^0-120^0= {60^0}.\)
Ví dụ 2:
Cho hình lăng trụ đứng ABC.A’B’C’, đáy ABC là tam giác cân AB=AC=a, \(\widehat {BAC} = {120^0}\), BB’=a, I là trung điểm của CC’. Tính cosin của góc giữa hai mp(ABC) và (AB’I).
Hướng dẫn giải:
Ta thấy tam giác ABC là hình chiếu vuông góc của tam giác AB’I lên mặt phẳng (ABC).
Gọi φ là góc giữa hai mặt phẳng (ABC) và (AB’I).
Theo công thức hình chiếu ta có: \(\cos \varphi = \frac{{{S_{ABC}}}}{{{S_{AB'I}}}}\).
Ta có:
\({S_{ABC}} = \frac{1}{2}.AB.AC.\sin {120^0} = \frac{{{a^2}\sqrt 3 }}{4}\)
\(AI = \sqrt {A{C^2} + C{I^2}} = \frac{{a\sqrt 5 }}{2}\)
\(AB' = \sqrt {A{B^2} + BB{'^2}} = a\sqrt 2\)
\(IB' = \sqrt {B'C{'^2} + IC{'^2}} = \frac{{a\sqrt {13} }}{2}.\)
Suy ra: Tam giác AB’I vuông tại A nên \({S_{AB'I}} = \frac{1}{2}.AB'.AI = \frac{{{a^2}\sqrt {10} }}{4}\).
Vậy: \(\cos \varphi = \frac{{{S_{ABC}}}}{{{S_{AB'I}}}} = \sqrt {\frac{3}{{10}}} .\)
Ví dụ 3:
Cho hình chóp S.ABCD đáy ABCD là hình thoi, SA=SC. Chứng minh rằng: \((SBD) \bot (ABCD).\)
Hướng dẫn giải:
Ta có: \(AC \bot BD\) (1) (giả thiết).
Mặt khác, \(SO \bot AC\) (2) (SAC là tam giác cân tại A và O là trung điểm của AC nên SO là đường cao của tam giác).
Từ (1) và (2) suy ra: \(AC \bot (SBD)\) mà \(AC \subset (ABCD)\) nên \((SBD) \bot (ABCD).\)
Ví dụ 4:
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB=a, \(AD = a\sqrt 2\), \(SA \bot (ABCD)\). Gọi M là trung điểm của AD, I là giao điểm của AC và BM. Chứng minh rằng: \((SAC) \bot (SMB).\)
Lời giải:
Ta có: \(SA \bot (ABCD) \Rightarrow SA \bot BM{\rm{ (1)}}\).
Xét tam giác vuông ABM có: \(\tan \widehat {AMB} = \frac{{AB}}{{AM}} = \sqrt 2\).
Xét tam giác vuông ACD có: \(\tan \widehat {CAD} = \frac{{CD}}{{AD}} = \frac{1}{{\sqrt 2 }}\).
Ta có:
\(\begin{array}{l} \cot \widehat {AIM} = \cot ({180^0} - (\widehat {AMB} + \widehat {CAD}))\\ = \cot (\widehat {AMB} + \widehat {CAD}) = 0 \Rightarrow \widehat {AIM} = {90^0} \end{array}\)
Hay \(BM \bot AC{\rm{ (2)}}\).
+ Từ (1) và (2) suy ra: \(BM \bot (SAC)\) mà \(BM \subset (SAC)\) nên \((SAC) \bot (SMB).\)
3. Luyện tập Bài 4 chương 3 hình học 11
Nội dung bài học sẽ giúp các em nắm được khái niệm, cách xác định góc giữa hai mặt phẳng, mối liên hệ của diện tích đa giác và hình chiếu của nó, các điều kiện để hai mặt phẳng vuông góc nhau. Bên cạnh đó là các ví dụ minh họa sẽ giúp các em hình thành các kĩ năng giải bài tập liên quan đến xác định góc giữa hai mặt phẳng, chứng minh hai mặt phẳng vuông góc,...
3.1 Trắc nghiệm về Hai mặt phẳng vuông góc
Để cũng cố bài học xin mời các em cũng làm Bài kiểm tra Trắc nghiệm Hình học 11 Bài 4 để kiểm tra xem mình đã nắm được nội dung bài học hay chưa.
-
- A. \((SAB) \bot \left( {ABC} \right)\)
- B. \((SAB) \bot \left( {SAC} \right)\)
- C. Vẽ AH vuông góc với BC, góc ASH là góc giữa mặt phẳng (SBC) và (ABC)
- D. Góc SCB là góc giữa hai mặt phẳng (SBC) và (SAC)
-
Câu 2:
Cho tứ diện ABCD có AC = AD và BC = BD. Gọi I là trung điểm của CD. Khẳng định nào sau đây là sai?
- A. Góc giữa hai mặt phẳng (ACD) và (BCD) là góc AIB
- B. \((BCD)\bot (AIB)\)
- C. Góc giữa hai mặt phẳng (ABC) và (ABD) là góc CBD
- D. \((ACD)\bot (AIB)\)
-
- A. Góc SBA
- B. Góc SCB
- C. Góc SCA
- D. Góc SIA (với I là trung điểm BC)
-
- A. \(30^o\)
- B. \(45^o\)
- C. \(60^o\)
- D. \(75^o\)
-
- A. \((SAB)\bot (SAD)\)
- B. \((SAC)\bot\)đáy
- C. \(\tan \alpha = \sqrt 5 \)
- D. \(\alpha = \widehat {SOA}\)
Câu 2- Câu 5: Xem thêm phần trắc nghiệm để làm thử Online
3.2 Bài tập SGK và Nâng Cao về Hai mặt phẳng vuông góc
Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Hình học 11 Bài 4 sẽ giúp các em nắm được các phương pháp giải bài tập từ SGK hình học 11 Cơ bản và Nâng cao.
Bài tập 3.29 trang 151 SBT Hình học 11
Bài tập 3.30 trang 151 SBT Hình học 11
Bài tập 3.31 trang 151 SBT Hình học 11
Bài tập 3.32 trang 152 SBT Hình học 11
Bài tập 21 trang 111 SGK Hình học 11 NC
Bài tập 22 trang 111 SGK Hình học 11 NC
Bài tập 23 trang 111 SGK Hình học 11 NC
Bài tập 24 trang 111 SGK Hình học 11 NC
Bài tập 25 trang 112 SGK Hình học 11 NC
Bài tập 26 trang 112 SGK Hình học 11 NC
Bài tập 27 trang 112 SGK Hình học 11 NC
Bài tập 28 trang 112 SGK Hình học 11 NC
4. Hỏi đáp về bài 4 chương 3 hình học 11
Nếu có thắc mắc cần giải đáp các em có thể để lại câu hỏi trong phần Hỏi đáp, cộng đồng Toán Chúng tôi sẽ sớm trả lời cho các em.