Hướng dẫn giải các bài tập dạng toán Tìm tổng các số hạng dãy số cấp tiểu học

TÌM TỔNG SỐ HẠNG CÁC DÃY SỐ

1. Cách giải
Nếu các số hạng của dãy số cách đều nhau thì tổng của 2 số hạng cách đều số hạng đầu và số hạng cuối trong dãy đó bằng nhau. Vì vậy:
Tổng các số hạng của dãy = tổng của 1 cặp 2 số hạng cách đều số hạng đầu và cuối x số hạng của dãy: 2

2. Bài tập vận dụng

Bài 1:
Tính tổng của 100 số lẻ đầu tiên.

Giải:
Dãy của 100 số lẻ đầu tiên là:
1 + 3 + 5 + 7 + 9 +. . . + 197 + 199.
Ta có:
1 + 199 = 200
3 + 197 = 200
5 + 195 = 200
... 
Vậy tổng phải tìm là:
200 x 100: 2 = 10 000
Đáp số 10 000

Bài 2:
Cho 1 số tự nhiên gồm các số tự nhiên liên tiếp từ 1 đến 1983 được viết theo thứ tự liền nhau như sau:
1 2 3 4 5 6 7 8 9 10 11 12 13. . . 1980 1981 1982 1983
Hãy tính tổng tất cả các chữ số của số đó.
(Đề thi học sinh giỏi toàn quốc năm 1983)

Giải:
Cách 1. Ta nhận xét:
* các cặp số:
- 0 và 1999 có tổng các chữ số là:
0 + 1 + 9 + 9 + 9 = 28
- 1 và 1998 có tổng các chữ số là:
1 + 1 + 9 + 9 + 8 = 28
- 2 và 1997 có tổng các chữ số là:
2 + 1 + 9 + 9 + 7 = 28
- 998 và 1001 có tổng các chữ số là:
9 + 9 + 8 + 1 + 1 = 28
- 999 và 1000 có tổng các chữ số là:
9 + 9 + 9 + 1 = 28
Như vậy trong dãy số
0, 1, 2, 3, 4, 5,. . . , 1997, 1998, 1999
Hai số hạng cách đều số hạng đầu và số hạng cuối đều có tổng bằng 28. Có 1000 cặp như vậy, do đó tổng các chữ số tạo nên dãy số trên là:
28 x 1000 = 28 000
* Số tự nhiên được tạo thành bằng cách viết liên tiếp các số tự nhiên từ 1984 đến 1999 là 

* Vậy tổng các chữ số của số tự nhiên đã cho là:
28 000 – 382 = 27 618

Bài 3:
Viết các số chẵn liên tiếp:
2, 4, 6, 8,. . . , 2000
Tính tổng của dãy số trên

Giải:
Dãy số trên 2 số chẵn liên tiếp hơn kém nhau 2 đơn vị.
Dãy số trên có số số hạng là:
(2000 – 2): 2 + 1 = 1000 (số)
1000 số có số cặp số là:
1000: 2 = 500 (cặp)
Tổng 1 cặp là:
2 + 2000 = 2002
Tổng của dãy số là:
2002 x 500 = 100100
* Bài tập tự luyện

Bài 1: Tính tổng:
a, 6 + 8 + 10 +. .. + 1999.
b, 11 + 13 + 15 +. .. + 147 + 150
c, 3 + 6 + 9 +. .. + 147 + 150.
Bài 2: Viết 80 số chẵn liên tiếp bắt đầu từ 72. Số cuối cùng là số nào?
Bài 3: Có bao nhiêu số:
a, Có 3 chữ số khi chia cho 5 dư 1? dư 2?
b, Có 4 chữ số chia hết cho 3?
c, Có 3 chữ số nhỏ hơn 500 mà chia hết cho 4?
Bài 4: Khi đánh số thứ tự các dãy nhà trên một đường phố, người ta dùng các số lẻ liên tiếp 1, 3, 5, 7,. .. để đánh số dãy thứ nhất và các số chẵn liên tiếp 2, 4, 6, 8,. .. để đánh số dãy thứ hai. Hỏi nhà cuối cùng trong dãy chẵn của đường phố đó là số mấy, nếu khi đánh số dãy này người ta đã dùng 769 chữ cả thảy?
Bài 5: Cho dãy các số chẵn liên tiếp 2, 4, 6, 8,. .. Hỏi số 1996 là số hạng thứ mấy của dãy này? Giải thích cách tìm.
Bài 6: Tìm tổng của:
a, Các số có hai chữ số chia hết cho 3;
b, Các số có hai chữ số chia cho 4 dư 1;
c, 100 số chẵn đầu tiên;
d, 10 số lẻ khác nhau lớn hơn 20 và nhỏ hơn 40.

Trên đây là một phần nội dung tài liệu Hướng dẫn giải các bài tập dạng toán Tìm tổng các số hạng dãy số cấp tiểu học​​​​. Để xem thêm nhiều tài liệu tham khảo hữu ích khác các em chọn chức năng xem online hoặc đăng nhập vào trang Chúng tôi để tải tài liệu về máy tính.

Hy vọng tài liệu này sẽ giúp các em học sinh ôn tập tốt và đạt thành tích cao trong học tập.

Ngoài ra các em có thể tham khảo thêm một số tư liệu cùng chuyên mục tại đây:

​Chúc các em học tập tốt !

Tham khảo thêm

Bình luận

Có Thể Bạn Quan Tâm ?