TRƯỜNG THCS DANH THẮNG | ĐỀ THI HSG LỚP 6 MÔN: TOÁN (Thời gian làm bài: 120 phút) |
Đề số 1
Câu 1: (3đ).
a. Kết quả điều tra ở một lớp học cho thấy: Có 20 học sinh thích bóng đá, 17 học sinh thích bơi, 36 học sinh thích bóng chuyền, 14 học sinh thích đá bóng và bơi, 13 học sinh thích bơi và bóng chuyền, 15 học sinh thích bóng đá và bóng chuyền, 10 học sinh thích cả ba môn, 12 học sinh không thích môn nào. Tính xem lớp học đó có bao nhiêu học sinh?
b. Cho số: A = 123456789101112 …….585960.
- Số A có bao nhiêu chữ số?
- Hãy xóa đi 100 chữ số trong số A sao cho số còn lại là:
+ Nhỏ nhất
+ Lớn nhất
Câu 2: (2đ).
a. Cho A = 5 + 52 + … + 596. Tìm chữ số tận cùng của A.
b.Tìm số tự nhiên n để: 6n + 3 chia hết cho 3n + 6
Câu 3: (3đ).
a. Tìm một số tự nhiên nhỏ nhất biết rằng khi chia số đó cho 3 dư 2, cho 4 dư 3, cho 5 dư 4 và cho 10 dư 9.
b. Chứng minh rằng: 11n + 2 + 122n + 1 Chia hết cho 133.
Câu 4: (2đ). Cho n điểm trong đó không có 3 điểm nào thẳng hàng . Cứ qua hai điểm ta vẽ 1 đường thẳng. Biết rằng có tất cả 105 đường thẳng. Tính n?
ĐÁP ÁN
Câu 1: (3đ).
a. Vẽ được sơ đồ cho (1,5đ).
- Số học sinh thích đúng 2 môn bóng đá và bơi: 14 – 10 = 4 (hs)
- Số học sinh thích đúng hai môn bơi và bóng chuyền: 13 – 10 = 3 (hs).
- Số học sinh thích đúng hai môn bóng đá và bóng chuyền: 15 – 10 = 5 (hs)
- Số học sinh chỉ thích bóng đá: 20 – (4 + 10 + 5) = 1 (hs)
- Số học sinh chỉ thích bơi: 17 – (4 + 10 + 3) = 0 (hs).
- Số học sinh chỉ thích bóng chuyền: 36 – (5 + 10 + 3) = 18 (hs).
Vậy: Số học sinh của lớp là: 1 + 0 + 18 + 4 + 10 + 5 + 3 + 12 + = 53 (hs).
b. (1,5 đ)
A = 1 2 3 4 5 6 7 8 9 10 11 12 …… 58 59 60.
* Từ 1 đến 9 có : 9 chữ số
Từ 10 đến 60 có: 51 . 2 = 102 chữ số.
Vậy: Số A có 9 + 102 = 111 chữ số. (0,5đ)
* Nếu xóa 100 chữ số trong số A thì số A còn 11 chữ số. Trong số A có 6 chữ số 0 nhưng có 5 chữ số 0 đứng trước các chữ số 51 52 53 …. 58 59 60.
Trong số nhỏ nhất có 5 chữ số 0 đứng trước số nhỏ nhất là số có 6 chữ số.
Số nhỏ nhất là 00000123450 = 123450 (0,5đ).
* Trong số A có 6 chữ số 9. Nếu số lớn nhất có 6 chữ số 9 đứng liền nhau thì số đó là: 99999960
Số này chỉ có 8 chữ só không thỏa mãn.
Số lớn nhất chỉ có 5 chữ số 9 liền nhau số đó có dạng 99999….
Các chữ số còn lại 78 59 60.
Vậy số lớn nhất: 99999785860.
........
---(Nội dung đầy đủ, chi tiết phần đáp án của đề thi vui lòng xem tại online hoặc đăng nhập để tải về máy)---
Đề số 2
Bài 1(2đ)
a)Tính tổng S = \(\frac{{27 + 4500 + 135 + 550.2}}{{2 + 4 + 6 + ....14 + 16 + 18}}\)
b) So sánh: A = \(\frac{{{{2006}^{2006}} + 1}}{{{{2007}^{2007}} + 1}}\) và B = \(\frac{{{{2006}^{2005}} + 1}}{{{{2006}^{2006}} + 1}}\)
Bài 2 (2đ)
a. Chứng minh rằng: C = 2 + 22 + 2 + 3 +… + 299 + 2100 chia hết cho 31
b. Tính tổng C. Tìm x để 22x – 1 - 2 = C
Bài 3 (2đ)
Một số chia hết cho 4 dư 3, chia cho 17 dư 9, chia cho 19 dư 13. Hỏi số đó chia cho1292 dư bao nhiêu
Bài 4: Trong đợt thi đua, lớp 6A có 42 bạn được từ 1 điểm 10 trở lên, 39 bạn được 2 điểm 10 trở lên, 14 bạn được từ 3 điểm 10 trở lên, 5 bạn được 4 điểm 10, không có ai được trên 4 điểm 10. Tính xem trong đợt thi đua lớp 6A được bao nhiêu điểm 10
..........
---(Nội dung đầy đủ, chi tiết phần đáp án của đề thi vui lòng xem tại online hoặc đăng nhập để tải về máy)---
Đề số 3
Bài 1. Tính các giá trị của biểu thức.
a. A = 1 + 2 + 3 + 4 + .........+ 100
b. B = -1\(\frac{1}{5}.\frac{{4(3 + \frac{1}{3} - \frac{3}{7} - \frac{3}{{53}})}}{{3 + \frac{1}{3} - \frac{3}{{37}} - \frac{3}{{53}}}}:\frac{{4 + \frac{4}{{17}} + \frac{4}{{19}} + \frac{4}{{2003}}}}{{5 + \frac{5}{{17}} + \frac{5}{{19}} + \frac{5}{{2003}}}}.\)
c. C = \(\frac{1}{{1.2}} + \frac{1}{{2.3}} + \frac{1}{{3.4}} + \frac{1}{{4.5}} + ... + \frac{1}{{99.100}}\)
Bài 2. So sánh các biểu thức :
a. 3200 và 2300
b. A = \(\frac{{121212}}{{171717}} + \frac{2}{{17}} - \frac{{404}}{{1717}}\) với B = \(\frac{{10}}{{17}}\).
Bài 3. Cho 1số có 4 chữ số: \(\overline {*26*} \). Điền các chữ số thích hợp vào dấu (*) để được số có 4 chữ số khác nhau chia hết cho tất cả 4 số : 2; 3 ; 5 ; 9.
Bài 4. Tìm số tự nhiên n sao cho : 1! +2! +3! +...+n! là số chính phương?
.........
---(Nội dung đầy đủ, chi tiết phần đáp án của đề thi vui lòng xem tại online hoặc đăng nhập để tải về máy)---
Đề số 4
Câu 1: Tính tổng \(A = \frac{1}{3} + \frac{1}{{{3^2}}} + \frac{1}{{{3^3}}} + ... + \frac{1}{{{3^{100}}}}\)
Câu 2: Tìm số tự nhiên a, b, c, d nhỏ nhất sao cho:
\(\frac{a}{b} = \frac{5}{3};\frac{b}{c} = \frac{{12}}{{21}};\frac{c}{d} = \frac{6}{{11}}\)
Câu 3: Cho 2 dãy số tự nhiên 1, 2, 3, ..., 50
a) Tìm hai số thuộc dãy trên sao cho ƯCLN của chúng đạt giá trị lớn nhất.
b) Tìm hai số thuộc dãy trên sao cho BCNN của chúng đạt giá trị lớn nhất.
..........
---(Nội dung đầy đủ, chi tiết phần đáp án của đề thi vui lòng xem tại online hoặc đăng nhập để tải về máy)---
Đề số 5
Bài 1 (1,5đ): Dùng 3 chữ số 3; 0; 8 để ghép thành những số có 3 chữ số:
a. Chia hết cho 2
b. Chia hết cho 5
c. Không chia hết cho cả 2 và 5
Bài 2 (2đ):
a. Tìm kết quả của phép nhân
\(A = \underbrace {33....3}_{50chu{\rm{s}}o}\;\;\;X\;\;\;\underbrace {99....9}_{50chu{\rm{s}}o}\)
b. Cho B = 3 + 32 + 33 + ... + 3100
Tìm số tự nhiên n, biết rằng 2B + 3 = 3n
Bài 3 (1,5 đ): Tính
a) C = \(\frac{{101 + 100 + 99 + 98 + ... + 3 + 2 + 1}}{{101 - 100 + 99 - 98 + ... + 3 - 2 + 1}}\)
b) D = \(\frac{{3737.43 - 4343.37}}{{2 + 4 + 6 + ... + 100}}\)
..........
---(Để xem tiếp nội dung của đề thi các em vui lòng xem tại online hoặc đăng nhập để tải về máy)---
Trên đây là một phần nội dung tài liệu Bộ 5 đề thi chọn HSG môn Toán lớp 6 Trường THCS Danh Thắng. Để xem thêm nhiều tài liệu tham khảo hữu ích khác các em chọn chức năng xem online hoặc đăng nhập vào trang Chúng tôi để tải tài liệu về máy tính.
Hy vọng tài liệu này sẽ giúp các em học sinh ôn tập tốt và đạt thành tích cao trong học tập.
Ngoài ra các em có thể tham khảo thêm một số tư liệu cùng chuyên mục tại đây:
- Bộ 5 đề thi chọn HSG môn Toán lớp 6 trường THCS Nguyễn Du
- Bộ 5 đề thi chọn HSG môn Toán lớp 6 trường THCS Bắc Lý
Chúc các em học tập tốt !