Bộ 4 đề thi thử vào lớp 10 THPT môn Toán năm 2021 trường THCS Trung Châu

TRƯỜNG THCS TRUNG CHÂU

ĐỀ THI THỬ VÀO LỚP 10 THPT NĂM 2021

MÔN TOÁN

(Thời gian làm bài: 120 phút)

 

ĐỀ 1

Câu 1.

1) Tính giá trị của các biểu thức sau:

\(A = 3\sqrt {49}  - \sqrt {25} \) 

\(B = \sqrt {{{(3 - 2\sqrt 5 )}^2}}  - \sqrt {20} \)

2) Cho biểu thức \(P = \left( {\frac{{\sqrt x }}{{\sqrt x  - 1}} + \frac{{\sqrt x }}{{x - \sqrt x }}} \right):\frac{{\sqrt x  + 1}}{3}\) với \(x > 0;x \ne 1\).

a) Rút gọn biểu thức P.

b) Tìm giá trị của  để P = 1.

Câu 2.

1) Cho parabol \((P):y = \frac{1}{2}{x^2}\) và đường thẳng \((d):y = x + 2\) 

a) Vẽ parabol (P) và đường thẳng (d) trên cùng hệ trục tọa độ Oxy.

b) Viết phương trình đường thẳng \(({d_1}):y = ax + b\) song song với (d) và cắt (P) tại điểm A có hoành độ bằng -2.

2) Không sử dụng máy tính, giải hệ phương trình: \(\left\{ \begin{array}{l}
2x + y = 5\\
x + 2y = 4
\end{array} \right.\) 

Câu 3. Cho phương trình \({x^2} - (m + 2)x + m + 8 = 0\) (1) với m là tham số.

a) Giải phương trình (1) khi m = -8.

b) Tìm các giá trị của m để phương trình (1) có hai nghiệm dương phân biệt \({x_1};{x_2}\) thỏa \(x_1^3 - {x_2} = 0\).

Câu 4:  Nông trường cao su Minh Hưng phải khai thác 260 tấn mũ trong một thời gian nhất định. Trên thực tế, mỗi ngày nông trường đều khai thác vượt định mức 3 tấn. Do đó, nông trường đã khai thác được 261 tấn và song trước thời hạn 1 ngày. Hỏi theo kế hoạch mỗi ngày nông trường khai thác được bao nhiêu tấn mũ cao su.

Câu 5.

Cho đường tròn tâm  đường kính AB = 2R. Gọi C là trung điểm của OA, qua C kẻ đường thẳng vuông góc với OA cắt đường tròn (O) tại hai điểm phân biệt M và N. Trên cung nhỏ BM lấy điểm K ( K khác B và M). Gọi H là giao điểm của AK và MN.

a) Chứng minh tứ giác BCHK nội tiếp đường tròn.

b) Chứng minh \(AK.AH = {R^2}\).

ĐÁP ÁN

Câu 1.

1) \(A = 3\sqrt {49}  - \sqrt {25} \) 

\(A = 3\sqrt {{7^2}}  - \sqrt {{5^2}} \) 

A = 3.7 - 5

A = 21 - 5

A = 16

\(B = \sqrt {{{(3 - 2\sqrt 5 )}^2}}  - \sqrt {20} \)

\(B = \left| {3 - 2\sqrt 5 } \right| - \sqrt {{2^2}.5} \) 

\(B =  - (3 - 2\sqrt 5 ) - 2\sqrt 5 \) 

\(B =  - 3 + 2\sqrt 5  - 2\sqrt 5 \) 

B = -3

2. a) Rút gọn biểu thức P.

\(P = \left( {\frac{{\sqrt x }}{{\sqrt x  - 1}} + \frac{{\sqrt x }}{{x - \sqrt x }}} \right):\frac{{\sqrt x  + 1}}{3}\) 

\(P = \left( {\frac{{\sqrt x }}{{\sqrt x  - 1}} + \frac{{\sqrt x }}{{\sqrt x (\sqrt x  - 1)}}} \right):\frac{{\sqrt x  + 1}}{3}\) 

\(P = \left( {\frac{{\sqrt x .\sqrt x }}{{\sqrt x (\sqrt x  - 1)}} + \frac{{\sqrt x }}{{\sqrt x (\sqrt x  - 1)}}} \right):\frac{{\sqrt x  + 1}}{3}\)  

\(P = \frac{{x + \sqrt x }}{{\sqrt x (\sqrt x  - 1)}}:\frac{{\sqrt x  + 1}}{3}\) 

\(P = \frac{{x + \sqrt x }}{{\sqrt x (\sqrt x  - 1)}} \cdot \frac{3}{{\sqrt x  + 1}}\) 

\(P = \frac{{\sqrt x (\sqrt x  + 1).3}}{{\sqrt x (\sqrt x  - 1)(\sqrt x  + 1)}}\) 

\(P = \frac{3}{{\sqrt x  - 1}}\) 

b) Tìm giá trị của x để P = 1.

\(P = 1 \Leftrightarrow \frac{3}{{\sqrt x  - 1}} = 1\) 

\( \Leftrightarrow \sqrt x  - 1 = 3\)  

\( \Leftrightarrow \sqrt x  = 4\) 

\( \Leftrightarrow x = 16\) 

Vậy x = 16 thì P = 1

...........

 ---(Nội dung đầy đủ, chi tiết phần đáp án của đề thi vui lòng xem tại online hoặc đăng nhập để tải về máy)---

ĐỀ 2

Bài 1

Giải các phương trình, hệ phương trình sau:

1) \({x^2} - 7x + 10 = 0\) 

2) \({\left( {{x^2} + 2x} \right)^2} - 6{x^2} - 12x + 9 = 0\)  

3) \(\left\{ {\begin{array}{*{20}{l}}
{4x - y = 7}\\
{5x + y = 2}
\end{array}} \right.\)  

Bài 2 Cho Parabol \((P):y = \frac{1}{2}{x^2}\) và đường thẳng \((d):y = x + m - 1\) (  là tham số)

1) Vẽ đồ thị (P) 

2) Gọi \(A\left( {{x_A};{y_A}} \right),B\left( {{x_B};{y_B}} \right)\) là hai giao điểm phân biệt của (d) và (P). Tìm tất cả các giá trị của tham số  để  và  

Bài 3 Cho phương trình: \({x^2} + ax + b + 2 = 0\) ( a, b là tham số).

Tìm các giá trị của tham số a, b để phương trình trên có hai nghiệm phân biệt \({x_1},{x_2}\) thoả điều kiện: \(\left\{ {\begin{array}{*{20}{l}}
{{x_1} - {x_2} = 4}\\
{x_1^3 - x_2^3 = 28}
\end{array}} \right.\) 

..........

 ---(Nội dung đầy đủ, chi tiết phần đáp án của đề thi vui lòng xem tại online hoặc đăng nhập để tải về máy)---

Đề 3

Câu 1      

1. Giải phương trình: \(3(x - 1) = 5x + 2\)  

2. Cho biểu thức: \(A = \sqrt {x + 2\sqrt {x - 1} }  + \sqrt {x - 2\sqrt {x - 1} } \) với \(x \ge 1\) 

a) Tính giá trị biểu thức A khi x = 5.

b) Rút gọn biểu thức A khi \(1 \le x \le 2\).

Câu 2

1. Cho phương trình: \({x^2} - (m - 1)x - m = 0\). Tìm m để phương trình trên có một  nghiệm bằng 2. Tính nghiệm còn lại.

2. Trong mặt phẳng tọa độ Oxy cho ba đường thẳng

\({d_1}:y = 2x - 1;{\rm{ }}\;{d_2}:y = x;\;{\rm{ }}{d_3}:y =  - 3x + 2.\) 

Tìm hàm số có đồ thị là đường thẳng d song song với đường thẳng d3 đồng thời đi qua giao điểm của hai đường thẳng d1 và d2.

Câu 3:Hai đội công nhân cùng làm chung trong 4 giờ thì hoàn thành được \(\frac{2}{3}\) công việc. Nếu làm riêng thì thời gian hoàn thành công việc đội thứ hai ít hơn đội thứ nhất là  giờ. Hỏi nếu làm riêng thì thời gian hoàn thành công việc của mỗi đội là bao nhiêu? 

.........

 ---(Nội dung đầy đủ, chi tiết phần đáp án của đề thi vui lòng xem tại online hoặc đăng nhập để tải về máy)---

Đề 4

Câu 1: Vẽ đồ thị của hàm số y = -2x2

Câu 2: Giải các phương trình và hệ phương trình sau:

a) \({x^2} - x - 20 = 0\) 

b) \(4{x^4} - 5{x^2} - 9 = 0\)  

c) \(\left\{ \begin{array}{l}
2x - y = 8\\
3x + 5y =  - 1
\end{array} \right.\) 

Câu 3

a) Trong mặt phẳng toạ độ  cho parabol (P): y = x2 và đường thẳng (d): y = 2x + 4m2 -8m +3 ( m là tham số thực). Tìm các giá trị của m để (d) và (P) cắt nhau tại hai điểm phân biệt A(x1; y1); B(x2; y2) thoả mãn điều kiện y1 + y2 = 10

b) Trong kỳ thi Tuyển sinh vào lớp 10 THPT năm 2019, tổng chỉ tiêu tuyển sinh của Trường THPT A và trường THPT B là 900 học sinh. Do cả hai trường đều có chất lượng giáo dục rất tốt nên sau khi hết hạn thời gian điều chỉnh nguyên vọng thì số lượng thí sinh đăng ký dự tuyển vào Trường THPT A và Trường THPT B tăng lần lượt là 15% và 10% so với chỉ tiêu ban đầu. Vì vậy, tổng số thí sinh đăng ký dự tuyển của cả hai trường là 1010. Hỏi số lượng thí sinh đăng ký dự tuyển của mỗi trường là bao nhiêu?

.........

---(Để xem tiếp nội dung của đề thi các em vui lòng xem tại online hoặc đăng nhập để tải về máy)--- 

Trên đây là một phần nội dung tài liệu Bộ 4 đề thi thử vào lớp 10 THPT môn Toán năm 2021 trường THCS Trung Châu. Để xem thêm nhiều tài liệu tham khảo hữu ích khác các em chọn chức năng xem online hoặc đăng nhập vào trang Chúng tôi để tải tài liệu về máy tính.

Hy vọng tài liệu này sẽ giúp các em học sinh ôn tập tốt và đạt thành tích cao trong học tập.

Ngoài ra các em có thể tham khảo thêm một số tư liệu cùng chuyên mục tại đây:

​Chúc các em học tập tốt !

Tham khảo thêm

Bình luận

Có Thể Bạn Quan Tâm ?