Bài tập SGK Toán 9 Bài 7: Phương trình quy về phương trình bậc hai.
-
Bài tập 34 trang 54 SGK Toán 9 Tập 2
Giải các phương trình trùng phương:
a) \(x^4 - 5x^2 + 4 = 0\)
b) \(2x^4 - 3x^2 - 2 = 0\)
c) \(3x^4 + 10x^2 + 3 = 0\)
-
Bài tập 35 trang 56 SGK Toán 9 Tập 2
Giải các phương trình:
a) \(\small \frac{(x+ 3)(x-3)}{3}+ 2 = x(1 - x)\)
b) \(\frac{x+ 2}{x-5}+ 3 =\frac{6}{2-x}\)
c) \(\small \frac{4}{x+1}=\frac{-x^2-x+2}{(x+1)(x+2)}\)
-
Bài tập 36 trang 56 SGK Toán 9 Tập 2
Giải các phương trình:
a) \((3x^2 -5x + 1)(x^2 - 4) = 0\)
b) \((2x^2 + x - 4)^2 - (2x - 1)^2 = 0\)
-
Bài tập 37 trang 56 SGK Toán 9 Tập 2
Giải phương trình trùng phương:
a) \(9x^4 - 10x^2 + 1 = 0\)
b) \(5x^4 + 2x^2 - 16 = 10 - x^2\)
c) \(0,3x^4 + 1,8x^2 + 1,5 = 0\)
d) \(2x^2 + 1 =\frac{1}{x^{2}}-4\)
-
Bài tập 38 trang 56 SGK Toán 9 Tập 2
Giải các phương trình:
a) \((x - 3)^2 + (x + 4)^2 = 23 - 3x\)
b) \(x^3 + 2x^2 - (x - 3)^2 = (x - 1)(x^2- 2)\)
c) \((x - 1)^3 + 0,5x^2 = x(x^2 + 1,5)\)
d) \(\small \frac{x(x - 7)}{3} - 1 =\frac{x}{2}-\frac{x-4}{3}\)
e) \(\frac{14}{x^{2}-9}= 1 -\frac{1}{3-x}\)
f) \(\frac{2x}{x+1}=\frac{x^{2}-x+8}{(x+1)(x-4)}\)
-
Bài tập 39 trang 57 SGK Toán 9 Tập 2
Giải phương trình bằng cách đưa về phương trình tích.
a) \((3x^2 - 7x - 10)[2x^2 + (1 - \sqrt{5})x + \sqrt{5} - 3] = 0\)
b) \(x^3 + 3x^2- 2x - 6 = 0\)
c) \((x^2 - 1)(0,6x + 1) = 0,6x^2 + x\)
d) \((x^2 + 2x - 5)^2 = ( x^2 - x + 5)^2\)
-
Bài tập 40 trang 57 SGK Toán 9 Tập 2
Giải phương trình bằng cách đặt ẩn phụ:
a) \(3(x^2 + x)^2 - 2(x^2 + x) - 1 = 0\)
b) \((x^2 - 4x + 2)^2 + x^2 - 4x - 4 = 0\)
c) \( x - \sqrt{x} = 5\sqrt{x }+ 7\)
d) \(\frac{x}{x+ 1}-10 . \frac{x+1}{x}=3\)
Hướng dẫn: a) Đặt \(t = x^2 + x\), ta có phương trình \(3t^2 - 2t - 1 = 0\). Giải phương trình này, ta tìm được hai giá trị của t. Thay mỗi giá trị của t vừa tìm được vào đằng thức \(t = x^2 + x\), ta được một phương trình của ẩn x. Giải mỗi phương trình này sẽ tìm được giá trị của x.
d) Đặt \(\frac{x+1}{x}= t\) hoặc \(\frac{x}{x+ 1} = t\)