Bài tập SGK Toán 11 Bài 4: Hai mặt phẳng vuông góc.
-
Bài tập 1 trang 113 SGK Hình học 11
Cho ba mặt phẳng \((\alpha ), (\beta ), (\gamma )\), những mệnh đề nào sau đây đúng?
a) Nếu \((\alpha )\perp (\beta )\) và \((\alpha ) // (\gamma )\) thì \((\beta ) ⊥ (\gamma )\).
b) Nếu \((\alpha ) \perp (\beta )\) và \((\alpha ) \perp (\gamma )\) thì \((\beta ) // (\gamma )\).
-
Bài tập 2 trang 113 SGK Hình học 11
Cho hai mặt phẳng \((\alpha ), (\beta )\) vuông góc với nhau. Người ta lấy trên giao tuyến \(\Delta\) của hai mặt phẳng đó hai điểm A và B sao cho AB = 8cm. Gọi C là một điểm trên \(\alpha\) và D là một điểm trên \((\beta )\) sao cho AC và BD cùng vuông góc với giao tuyến \(\Delta\) và AC = 6cm, BD = 24cm. Tính độ dài đoạn CD.
-
Bài tập 3 trang 113 SGK Hình học 11
Trong mặt phẳng (α) cho tam giác ABC vuông ở B. Một đoạn thẳng AD vuông góc với \((\alpha )\) tại A. Chứng minh rằng:
a) (ABD) là góc giữa hai mặt phẳng (ABC) và (DBC)
b) HK // BC với H và K lần lượt là giao điểm của DB và DC với mp(P) đi qua A và vuông góc với DB.
c) HK // BC với H và K lần lượt là giao điểm của DB và DC với mp(P) đi qua A và vuông góc với DB.
-
Bài tập 4 trang 114 SGK Hình học 11
Cho hai mặt phẳng \((\alpha )\), \((\beta )\) cắt nhau và một điểm M không thuộc \((\alpha )\) và \((\beta )\). Chứng minh rằng qua điểm M có một và chỉ một mặt phẳng (P) vuông góc với \((\beta )\)và \((\beta )\). Nếu \((\alpha ) // (\beta )\) thì kết quả trên sẽ thay đổi như thế nào?
-
Bài tập 5 trang 114 SGK Hình học 11
Cho hình lập phương ABCD.A'B'C'D'. Chứng minh rằng:
a) Mặt phẳng (AB'C'D) vuông góc với mặt phẳng (BCD'A');
b) Đường thẳng AC' vuông góc với mặt phẳng (A'BD).
-
Bài tập 6 trang 114 SGK Hình học 11
Cho hình chóp S.ABCD có đáy ABCD là một hình thoi cạnh a và có SA = SB = SC = a. Chứng minh rằng:
a) Mặt phẳng (ABCD) vuông góc với mặt phẳng (SBD);
b) Tam giác SBD là tam giác vuông.
-
Bài tập 7 trang 114 SGK Hình học 11
Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB = a, BC = b, CC' = c.
a) Chứng minh rằng mặt phẳng (ADC'B') vuông góc với mặt phẳng (ABB'A').
b) Tính độ dài đường chéo AC' theo a, b, c.
-
Bài tập 8 trang 114 SGK Hình học 11
Tính độ dài đường chéo của một hình lập phương cạnh a.
-
Bài tập 9 trang 114 SGK Hình học 11
Cho hình chóp tam giác đều S.ABC có SH là đường cao. Chứng minh \(SA \perp BC\) và \(SB \perp AC\).
-
Bài tập 10 trang 114 SGK Hình học 11
Cho hình chóp tứ giác đều S.ABCD có các cạnh bên và cạnh đáy đều bằng a. Gọi O là tâm của hình vuông ABCD.
a) Tính độ dài đoạn thẳng SO.
b) Gọi M là trung điểm của đoạn SC. Chứng minh hai mặt phẳng (MBD) và (SAC) vuông góc với nhau.
c) Tính độ dài đoạn OM và tính góc giữa hai mặt phẳng (MBD) và (ABCD).
-
Bài tập 11 trang 114 SGK Hình học 11
Cho hình chóp S.ABCD có đáy ABCD là một hình thoi tâm I cạnh a và có góc A bằng 600 cạnh \(SC=\frac{a\sqrt{6}}{2}\) và SC vuông góc với mặt phẳng (ABCD).
a) Chứng minh mặt phẳng (SBD) vuông góc với mặt phẳng (SAC).
b) Trong tam giác SCA kẻ IK vuông góc với mặt phẳng (SAC) tại K. Hãy tính độ dài IK
c) Chứng minh \(\widehat {BKD} = {90^0}\) và từ đó suy ra mặt phẳng (SAB) vuông góc với mặt phẳng (SAD).
-
Bài tập 3.22 trang 150 SBT Hình học 11
Hình hộp ABCD.A'B'C'D' có tất cả các cạnh đều bằng nhau. Chứng minh rằng AC ⊥ B'D', AB' ⊥ CD' và AD' ⊥ CB'. Khi mặt phẳng (AA'C'C) vuông góc với mặt phẳng (BB'D'D)?