Bài tập SGK Toán 12 Bài 5: Khảo sát sự biến thiên và vẽ đồ thị của hàm số.
-
Bài tập 1 trang 43 SGK Giải tích 12
Khảo sát sự biến thiên và vẽ đồ thị của các hàm số bậc ba sau:
a) \(\small y = 2 + 3x - x^3\).
b) \(\small y = x^3 + 4x^2 + 4x\).
c) \(\small y = x^3 + x^2+ 9x\).
d) \(\small y = -2x^3 + 5\).
-
Bài tập 2 trang 43 SGK Giải tích 12
Khảo sát sự biến thiên và vẽ đồ thị của các hàm số bậc bốn sau:
a) \(\small y = -x^4 + 8x^2 - 1\).
b) \(\small y = x^4 - 2x^2 + 2\).
c) \(\small y=\frac{1}{2}x^4+x^2-\frac{3}{2}\).
d) \(\small y = -2x^2 - x^4 + 3\).
-
Bài tập 3 trang 43 SGK Giải tích 12
Khảo sát sự biến thiên và vẽ đồ thị của các hàm số phân thức:
a) \(y=\frac{x+3}{x-1}\).
b) \(y=\frac{1-2x}{2x-4}\).
c) \(y=\frac{-x+2}{2x+1}\).
-
Bài tập 4 trang 43 SGK Giải tích 12
Bằng cách khảo sát hàm số, hãy tìm số nghiệm của các phương trình sau:
a) \(\small x^3 - 3x^2 + 5 = 0\).
b) \(\small -2x^3 + 3x^2 - 2 = 0\).
c) \(\small 2x^2 - x^4 = -1\).
-
Bài tập 5 trang 44 SGK Giải tích 12
a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số \(\small y = -x^3 + 3x + 1\)
b) Dựa vào đồ thị (C), biện luận về số nghiệm của phương trình sau theo tham số m.
\(\small x^3 - 3x + m = 0.\)
-
Bài tập 6 trang 44 SGK Giải tích 12
Cho hàm số \(y=\frac{mx-1}{2x+m}\).
a) Chứng minh rằng với mọi giá trị của tham số m, hàm số luôn đồng biến trên mỗi khoảng xác định của nó.
b) Xác định m để tiệm cận đứng đồ thị đi qua \(A(-1 ; \sqrt{2}).\)
c) Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi m = 2.
-
Bài tập 7 trang 44 SGK Giải tích 12
Cho hàm số \(y=\frac{1}{4}x^4+\frac{1}{2}x^2+m\).
a) Với giá trị nào của tham số m, đồ thị của hàm số đi qua điểm (-1;1)?
b) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số khi m = 1.
c) Viết phương trình tiếp tuyến của (C) tại điểm có tung độ bằng \(\frac{7}{4}\).
-
Bài tập 8 trang 44 SGK Giải tích 12
Cho hàm số \(y=x^3+(m+3)x^2+1-m\) (m là tham số) có đồ thị là (Cm).
a) Xác định m để hàm số có điểm cực đại là x = -1.
b) Xác định m để đồ thị (Cm) cắt trục hoành tại x = -2.
-
Bài tập 9 trang 44 SGK Giải tích 12
Cho hàm số \(y = \frac{{\left( {m + 1} \right)x - 2m + 1}}{{x - 1}}\) (m là tham số) có đồ thị là (G).
a) Xác định m để đồ thị (G) đi qua điểm (0 ; -1).
b) Khảo sát sự biến thiên và vẽ đồ thị của hàm số với m tìm được.
c) Viết phương trình tiếp tuyến của đồ thị trên tại giao điểm của nó với trục tung.
-
Bài tập 1.56 trang 36 SBT Toán 12
Khảo sát và vẽ đồ thị các hàm số:
b) \(y = {x^3} - {x^2} + x\)
c) \(y = - {x^4} + 2{x^3} + 3\)
-
Bài tập 1.57 trang 36 SBT Toán 12
Khảo sát và vẽ đồ thị các hàm số :
a) \(y = \frac{{x - 2}}{{x + 1}}\)
b) \(y = \frac{{2 - x}}{{2x - 1}}.\)
-
Bài tập 1.58 trang 36 SBT Toán 12
Tìm giá trị của tham số m để hàm số
a) \(y = {x^3} + (m + 3){x^2} + mx - 2\) đạt cực tiểu tại x = 1
b) \(y = - \frac{1}{3}({m^2} + 6m){x^3} - 2m{x^2} + 3x + 1\) đạt cực đại tại x = −1