Bài tập SGK Toán 9 Bài 4: Giải hệ phương trình bằng phương pháp cộng đại số.
-
Bài tập 20 trang 19 SGK Toán 9 Tập 2
Giải các hệ phương trình sau bằng phương pháp cộng đại số.
a) \(\left\{\begin{matrix} 3x + y =3 & & \\ 2x - y = 7 & & \end{matrix}\right.\)
b)
c)
d)
e)
-
Bài tập 21 trang 19 SGK Toán 9 Tập 2
Giải các hệ phương trình sau bằng phương pháp cộng đại số.
a) \(\left\{\begin{matrix} x\sqrt{2} - 3y = 1 & & \\ 2x + y\sqrt{2}=-2 & & \end{matrix}\right.\)
b)
-
Bài tập 22 trang 19 SGK Toán 9 Tập 2
Giải các hệ phương trình sau bằng phương pháp cộng đại số:
a) \(\left\{\begin{matrix} -5x + 2y = 4 & & \\ 6x - 3y =-7 & & \end{matrix}\right.\)
b)
c)
-
Bài tập 23 trang 19 SGK Toán 9 Tập 2
Giải hệ phương trình sau:
\(\left\{\begin{matrix} (1 + \sqrt{2})x+ (1 - \sqrt{2})y = 5& & \\ (1 + \sqrt{2})x + (1 + \sqrt{2})y = 3& & \end{matrix}\right.\)
-
Bài tập 24 trang 19 SGK Toán 9 Tập 2
Giải hệ các phương trình:
a) \(\left\{\begin{matrix} 2(x + y)+ 3(x - y)=4 & & \\ (x + y)+2 (x - y)= 5& & \end{matrix}\right.\)
b) \(\left\{\begin{matrix} 2(x -2)+ 3(1+ y)=-2 & & \\ 3(x -2)-2 (1+ y)=-3& & \end{matrix}\right.\)
-
Bài tập 25 trang 19 SGK Toán 9 Tập 2
Ta biết rằng: Một đa thức bằng đa thức 0 khi và chỉ khi tất cả các hệ số của nó bằng 0. Hãy tìm các giá trị của m và n để đa thức sau (với biến số x) bằng đa thức 0: \(P(x) = (3m - 5n + 1)x + (4m - n -10)\).
-
Bài tập 26 trang 19 SGK Toán 9 Tập 2
Xác định a và b để đồ thị của hàm số \(y = ax + b\) đi qua điểm A và B trong mỗi trường hợp sau:
a) \(A(2; -2)\) và \(B(-1; 3)\)
b) \(A(-4; -2)\) và \(B(2; 1)\)
c) \(A(3; -1)\) và \(B(-3; 2)\)
d) \(A(\sqrt{3}; 2)\) và \(B(0; 2)\)
-
Bài tập 27 trang 20 SGK Toán 9 Tập 2
Bằng cách đặt ẩn phụ (theo hướng dẫn), đưa các hệ phương trình sau về dạng hệ hai phương trình bậc nhật hai ẩn rồi giải:
a) \(\left\{\begin{matrix} \frac{1}{x} - \frac{1}{y} = 1& & \\ \frac{3}{x} + \frac{4}{y} = 5& & \end{matrix}\right.\). Hướng dẫn. Đặt \(u=\frac{1}{x};v=\frac{1}{y}\)
b) \(\left\{\begin{matrix} \frac{1}{x - 2} + \frac{1}{y -1} = 2 & & \\ \frac{2}{x - 2} - \frac{3}{y - 1} = 1 & & \end{matrix}\right.\). Hướng dẫn. Đặt \(u=\frac{1}{x-2};v=\frac{1}{y-1}\)