Bài tập SGK Toán 12 Bài 3: Phương trình đường thẳng trong không gian.
-
Bài tập 1 trang 89 SGK Hình học 12
Viết phương trình tham số của đường thẳng d trong các trường hợp sau:
a) d đi qua điểm M(5 ; 4 ; 1) có vec tơ chỉ phương \(\overrightarrow{a}=(2 ; -3 ; 1)\) ;
b) d đi qua điểm A(2 ; -1 ; 3) và vuông góc với mặt phẳng (α) có phương trình: \(x + y - z + 5 = 0\);
c) d đi qua điểm B(2 ; 0 ; -3) và song song với đường thẳng ∆ có phương trình: \(\left\{ \begin{array}{l}
x = 1 + 2t\\
y = - 3 - 3t\\
z = 4t
\end{array} \right.\)d) d đi qua hai điểm P(1 ; 2 ; 3) và Q(5 ; 4 ; 4).
-
Bài tập 2 trang 89 SGK Hình học 12
Viết phương trình tham số của đường thẳng là hình chiếu vuông góc của đường thẳng \(d: \left\{\begin{matrix} x=2+t & \\ y=-3+2t & \\ z= 1+3t& \end{matrix}\right.\) lần lượt trên các mặt phẳng sau:
a) (Oxy).
b) (Oyz).
-
Bài tập 3 trang 90 SGK Hình học 12
Xét vị trí tương đối của đường thẳng d và d' trong các trường hợp sau:
a) \(d: \left\{\begin{matrix} x=-3+2t & \\ y=-2+3t& \\ z=6+4t& \end{matrix}\right.\) và \(d':\left\{\begin{matrix} x=5+t'& \\ y=-1-4t'& \\ z=20+t'& \end{matrix}\right.\) ;
b) \(d: \left\{\begin{matrix} x=1+t& \\ y=2+t& \\ z=3-t& \end{matrix}\right.\) và \(d':\left\{\begin{matrix} x=1+2t'& \\ y=-1+2t'& \\ z=2-2t'.& \end{matrix}\right.\)
-
Bài tập 4 trang 90 SGK Hình học 12
Tìm a để hai đường thẳng sau đây cắt nhau:
\(d:\left\{\begin{matrix} x=1+at & \\ y=t & \\ z= -1+2t & \end{matrix}\right.\) \(d':\left\{\begin{matrix} x=1-t' & \\ y=2+2t' & \\ z= 3-t'. & \end{matrix}\right.\)
-
Bài tập 5 trang 90 SGK Hình học 12
Tìm số giao điểm của đường thẳng d và mặt phẳng (α) :
a) d: \(\left\{\begin{matrix} x=12+4t & \\ y=9+3t & \\ z=1+t & \end{matrix}\right.\) và \((\alpha ): 3x + 5y - z - 2 = 0\);
b) d: \(\left\{ \begin{array}{l}
x = 1 + t\\
y = 2 - t\\
z = 1 + 2t
\end{array} \right.\) và \((\alpha ) : x + 3y + z = 0\) ;c) d: \(\left\{ \begin{array}{l}
x = 1 + t\\
y = 1 + 2t\\
z = 2 - 3t
\end{array} \right.\) và \((\alpha ) : x + y + z - 4 = 0\). -
Bài tập 6 trang 90 SGK Hình học 12
Tính khoảng cách giữa đường thẳng ∆: \(\left\{\begin{matrix} x=-3 +2t & \\ y=-1+3t & \\ z=-1 +2t & \end{matrix}\right.\) với mặt phẳng \(\small (\alpha ) : 2x - 2y + z + 3 = 0\).
-
Bài tập 7 trang 91 SGK Hình học 12
Cho điểm A(1 ; 0 ; 0) và đường thẳng ∆: \(\left\{\begin{matrix} x=2+t & \\ y=1+2t & \\ z=t & \end{matrix}\right.\).
a) Tìm tọa độ điểm H là hình chiếu vuông góc của điểm A trên đường thẳng ∆.
b) Tìm tọa độ điểm A' đối xứng với A qua đường thẳng ∆.
-
Bài tập 8 trang 91 SGK Hình học 12
Cho điểm M(1 ; 4 ; 2) và mặt phẳng \(\small (\alpha ): x + y + z -1 = 0\)
a) Tìm tọa độ điểm H là hình chiếu vuông góc của điểm M trên mặt phẳng \(\small (\alpha )\).
b) Tìm tọa độ điểm M' đối xứng với M qua mặt phẳng \(\small (\alpha )\).
c) Tính khoảng cách từ điểm M đến mặt phẳng \(\small (\alpha )\).
-
Bài tập 9 trang 91 SGK Hình học 12
Cho hai đường thẳng: \(d: \left\{\begin{matrix} x=1-t & \\ y=2+2t & \\ z=3t& \end{matrix}\right.\) và \(d': \left\{\begin{matrix} x=1+t' & \\ y=3-2t' & \\ z=1& \end{matrix}\right.\). Chứng minh d và d' chéo nhau.
-
Bài tập 10 trang 91 SGK Hình học 12
Giải bài toán sau đây bằng phương pháp tọa độ: Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng 1. Tính khoảng cách từ đỉnh A đến các mặt phẳng (A'BD) và B'D'C).
-
Bài tập 3.31 trang 129 SBT Hình học 12
Viết phương trình tham số, phương trình chính tắc của đường thẳng \(\Delta \) trong các trường hợp sau:
a) \(\Delta \) đi qua điểm A(1; 2; 3) và có vecto chỉ phương \(\vec a = (3;3;1)\) ;
b) \(\Delta \) đi qua điểm B(1; 0; -1) và vuông góc với mặt phẳng \((\alpha )\) : 2x – y + z + 9 = 0
c) \(\Delta \) đi qua hai điểm C(1; -1; 1) và D(2; 1; 4)
-
Bài tập 3.32 trang 129 SBT Hình học 12
Viết phương trình của đường thẳng \(\Delta \) nằm trong mặt phẳng \(\left( \alpha \right)\): y +2z = 0 và cắt hai đường thẳng d1: \(\left\{ \begin{array}{l}
x = 1 - t\\
y = t\\
z = 4t
\end{array} \right.\) và d2: \(\left\{ {\begin{array}{*{20}{c}}
{x = 2 - t'}\\
{y = 4 + 2t'}\\
{z = 4}
\end{array}} \right.\)