Bài tập SGK Toán 11 Bài 3: Đường thẳng vuông góc với mặt phẳng.
-
Bài tập 1 trang 104 SGK Hình học 11
Cho mặt phẳng \((\alpha )\) và hai đường thẳng a, b. Các mệnh đề sau đây đúng hay sai?
a) Nếu \(a // (\alpha )\), \(b\perp (\alpha )\) thì \(a \perp b\).
b) Nếu \(a // (\alpha )\), \(b\perp a\) thì \(b\perp (\alpha )\).
c) Nếu \(a // (\alpha )\), \(b//(\alpha )\) thì \(b // a\).
d) Nếu \(a \perp (\alpha ),\) \(b\perp a\) thì \(b // (\alpha )\).
-
Bài tập 2 trang 104 SGK Hình học 11
Cho tứ diện ABCD có hai mặt ABC và BCD là hai tam giác cân có chung đáy BC. Gọi I là trung điểm của cạnh BC.
a) Chứng minh rằng BC vuông góc với mặt phẳng (ADI)
b) Gọi AH là đường cao của tam giác ADI, chứng minh rằng AH vuông góc với mặt phẳng (BCD).
-
Bài tập 3 trang 104 SGK Hình học 11
Cho hình chóp S.ABCD có đáy là hình thoi ABCD tâm O và có SA = SB = SC = SD. Chứng minh rằng:
a) Đường thẳng SO vuông góc với mặt phẳng (ABCD)
b) Đường thẳng AC vuông góc với mặt phẳng (SBD) và đường thẳng BD vuông góc với mặt phẳng (SAC)
-
Bài tập 4 trang 105 SGK Hình học 11
Cho tứ diện OABC có ba cạnh OA, OB, OC đôi một vuông góc. Gọi H là chân đường vuông góc hạ từ O tới mặt phẳng (ABC). Chứng minh rằng:
a) H là trực tâm của tam giác ABC;
b) \(\frac{1}{OH^{2}}=\frac{1}{OA^{2}}+\frac{1}{OB^{2}}+\frac{1}{OC^{2}}.\)
-
Bài tập 5 trang 105 SGK Hình học 11
Trên mặt phẳng \((\alpha )\) cho hình bình hành ABCD. Gọi O là giao điểm của AC và BD. S là một điểm nằm ngoài mặt phẳng \((\alpha )\) sao cho SA = SC, Sb = SD. Chứng minh rằng:
a) \(SO \perp (\alpha )\);
b) Nếu trong mặt phẳng (SAB) kẻ SH vuông góc với AB tại H thì AB vuông góc mặt phẳng (SOH).
-
Bài tập 6 trang 105 SGK Hình học 11
Cho hình chóp S.ABCD có đáy là hình thoi ABCD và có cạnh SA vuông góc với mặt phẳng (ABCD). Gọi I và K là hai điểm lần lượt lấy trên hai cạnh SB và SD sao cho \(\frac{{SI}}{{SB}} = \frac{{SK}}{{SD}}\). Chứng minh:
a) BD vuông góc với SC;
b) IK vuông góc với mặt phẳng (SAC).
-
Bài tập 7 trang 105 SGK Hình học 11
Cho tứ diện SABC có cạnh SA vuông góc với mặt phẳng (ABC) và có tam giác ABC vuông tại B. Trong mặt phẳng (SAB) kẻ từ AM vuông góc với SB tại M. Trên cạnh SC lấy điểm N sao cho \(\frac{{SM}}{{SB}} = \frac{{SN}}{{SC}}\) Chứng minh rằng:
a) \(BC \perp (SAC)\) và \(AM \perp (SBC)\);
b) \(SB \perp AN\).
-
Bài tập 8 trang 105 SGK Hình học 11
Cho điểm S không thuộc cùng mặt phẳng (α) có hình chiếu là điểm H. Với điểm M bất kì trên (α) và M không trùng với H, ta gọi SM là đường xiên và đoạn HM là hình chiếu của đường xiên đó. Chứng minh rằng:
a) Hai đường thẳng xiên bằng nhau khi và chỉ khi hai hình chiếu của chúng bằng nhau;
b) Với hai đường xiên cho trước, đường xiên nào lớn hơn thì có hình chiếu lớn hơn và ngược lại đường xiên nào có hình chiếu lớn hơn thì lớn hơn.
-
Bài tập 3.16 trang 145 SBT Hình học 11
Một đoạn thẳng AB không vuông góc với mặt phẳng (α) cắt mặt phẳng này tại trung điểm O của đoạn thẳng đó. Các đường thẳng vuông góc với (α) qua A và B lần lượt cắt mặt phẳng (α) tại A' và B'.
Chứng minh ba điểm A', O, B' thẳng hàng và AA' = BB'
-
Bài tập 3.17 trang 145 SBT Hình học 11
Cho tam giác ABC. Gọi (α) là mặt phẳng vuông góc với đường thẳng CA tại A và (β) là mặt phẳng vuông góc với đường thẳng CB tại B. Chứng minh rằng hai mặt phẳng (α) và (β) cắt nhau và giao tuyến d của chúng vuông góc với mặt phẳng (ABC).
-
Bài tập 3.18 trang 145 SBT Hình học 11
Cho hình lăng trụ tam giác ABC.A'B'C'. Gọi H là trực tâm của tam giác ABC và biết rằng A'H vuông góc với mặt phẳng (ABC). Chứng minh rằng:
a) AA ⊥ BC và AA' ⊥ B'C'.
b) Gọi MM' là giao tuyến của mặt phẳng (AHA') với mặt bên BCC'B', trong đó M ∈ BC và M' ∈ B'C'. Chứng minh rằng tứ giác BCC'B là hình chữ nhật và MM' là đường cao của hình chữ nhật đó.
-
Bài tập 3.19 trang 145 SBT Hình học 11
Hình chóp tam giác S.ABC có đáy ABC là tam giác vuông tại A và có cạnh bên SA vuông góc với mặt phẳng đáy là (ABC). Gọi D là điểm đối xứng của điểm B qua trung điểm O của cạnh AC. Chứng minh rằng CD ⊥ CA và CD ⊥ (SCA).