Bài 3: Đại lượng tỉ lệ nghịch

Nội dung bài học sẽ giới thiệu đến các em khái niệm Đại lượng tỉ lệ nghịch và các dạng toán liên quan như tìm hệ số tỉ lệ, tìm đại lượng chứa biết dựa vào tính chất. Cùng với đó là hệ thống bài tập minh họa có hướng dẫn giải sẽ giúp các em dễ dàng làm chủ nội dung bài học.

Tóm tắt lý thuyết

1.1. Định nghĩa

Đại lượng y gọi là tỉ lệ nghịch với đại lượng x nếu y liên hệ với x theo công thức

 \(y = \frac{a}{x}\) hoặc xy = a

Trong đó a là một hằng số khác 0.

1.2. Tính chất

  • Tích của một giá trị bất kì của đại lượng này với giá trị tương ứng của đại lượng kia luôn là một hằng số, bằng hệ số tỉ lệ

\({x_1}{y_1} = {x_2}{y_2} = .... = {x_i}{y_i} = .... = a.\)

  • Tỉ số hai giá trị bất kì của đại lượng này thì bằng nghịch đảo của tỉ số hai giá trị tương ứng của đại lượng kia

\(\frac{{{x_m}}}{{{x_n}}} = \frac{{{y_n}}}{{{y_m}}}.\)

Chú ý:

Khi ta có y tỉ lệ nghịch với x theo hệ số tỉ lệ a thì y tỉ lệ thuận với \(\frac{1}{x}\) theo hệ số tỉ lệ a.


Ví dụ 1:

Chia số 84 thành phần tỉ lệ nghịch với các số 3; 5; 6.

Hướng dẫn giải:

Gọi x, y, z là ba phần, theo thứ tự, tỉ lệ nghịch với 3,5, 6. Ta có:

\(\frac{x}{{\frac{1}{3}}} = \frac{y}{{\frac{1}{5}}} = \frac{z}{{\frac{1}{6}}}\) và x + y + z = 84.

Theo tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{{\frac{1}{3}}} = \frac{y}{{\frac{1}{5}}} = \frac{z}{{\frac{1}{6}}} = \frac{{x + y + z}}{{\frac{1}{3} + \frac{1}{5} + \frac{1}{6}}} = \frac{{84}}{{\frac{{21}}{{30}}}} = 120\)

Vậy:

\(\begin{array}{l}\frac{x}{{\frac{1}{3}}} = 120 \Rightarrow x = 120.\frac{1}{3} = 40\\\frac{y}{{\frac{1}{5}}} = 120 \Rightarrow y = 120.\frac{1}{5} = 24\\\frac{z}{{\frac{1}{6}}} = 120 \Rightarrow z = 120.\frac{1}{6} = 20\end{array}\)

Chú ý: Để tránh phải tiến hành các phép cộng phân số và đưa bài toán về tìm các số tỉ lệ thuận các số nguyên, ta có thể nhân các số \(\frac{1}{3};\frac{1}{5};\frac{1}{6}\) với BCNN (3,5,6) = 30 và được:

\(\frac{x}{{10}} = \frac{y}{6} = \frac{z}{5} = \frac{{x + y + z}}{{21}} = \frac{{84}}{{21}} = 4\)

\(\begin{array}{l}\frac{x}{{10}} = 4 \Rightarrow x = 40\\\frac{y}{6} = 4 \Rightarrow y = 24\\\frac{z}{5} = 4 \Rightarrow z = 20\end{array}\).


Ví dụ 2:

Một người đi từ thành phố A đến thành phố B hết 4 giờ. Khi đi từ B trở về A, người đó tăng vận tốc lên thêm 2 km mỗi giờ, nhờ vậy thời gian lúc về ít hơn thời gian lúc đi 48 phút. Tính đoạn đường AB.

Hướng dẫn giải:

Thời gian ông ta đi từ B về A là:

t2 = 4 giờ - 48 phút = 3 giờ 12 phút = \(3\frac{1}{5}\) giờ = \(\frac{{16}}{5}\) giờ.

Gọi vận tốc lúc đi là v km/h thì lúc về là (v + 2) km/h.

Quãng đường đi không đổi nên vận tốc và thời gian đi là hai đại lượng tỉ lệ nghịch với nhau, ta có: \(\frac{v}{{v + 2}} = \frac{{\frac{{16}}{5}}}{4}.\)

Từ đây ta tính ra v = 8 km/h và đoạn đường AB là 32 km.


Ví dụ 3:

Cho biết x và y là hai đại lượng tỉ lệ nghịch và khi x = -3, y = 6.

a. Tìm hệ số tỉ lệ nghịch của y đối với x.

b. Hãy biểu diễn y theo x

c. Tính giá trị của y khi x = -15, x=6.

Hướng dẫn giải:

a. Vì x và y là hai đại lượng tỉ lệ nghịch nên ta có công thức tổng quát

\(y = \frac{k}{x}\)

Thay x = -3, y=6 vào ta được:

\(6 = \frac{k}{{ - 3}} \Rightarrow k =  - 18\).

b. Với k =-18 ta có \(y = \frac{{ - 18}}{x}\).

c. Khi x = -15 thì \(y = \frac{{ - 18}}{{ - 15}} = 1,2\)

Khi x = 6 thì \(y = \frac{{ - 18}}{6} =  - 3\).

Bài tập minh họa

 
 

Bài 1: 

Cho biết đại lượng tỉ lệ nghịch với đại lượng x theo hệ số tỉ lệ x \((k \ne 0)\). Hỏi đại lượng x có tỉ lệ nghịch với đại lượng y không? Nếu có hệ số tỉ lệ là bao nhiêu?

Hướng dẫn giải:

Nêu y tỉ lệ nghịch với x theo hệ số tỉ lệ k thì ta có \(y = \frac{k}{x}\)

Từ đó ta có \(x = \frac{k}{y}\)

Do đó x cũng tỉ lệ nghịch với y theo hệ số tỉ lệ k.


Bài 2: 

Cho ba đại lượng x, y, z. Hãy tìm mối liên hệ giữa các đại lượng x, z biết:

a. x và y tỉ lệ nghịch, y và z cũng tỉ lệ nghịch

b. x và y tỉ lệ nghịch, y và z tỉ lệ thuận

c. x và y tỉ lệ thuận, y và z tỉ lệ nghịch

Hướng dẫn giải:

a. x và y tỉ lệ nghịch nên xy = a \((a \ne 0)\) (1)

y và z tỉ lệ nghịch nên yz = b \((b \ne 0)\) (2)

Từ (2) suy ra \(y = \frac{b}{z}\) thay vào (1) được.

\(\begin{array}{l}x.\frac{b}{z} = a\\x = \frac{a}{b}.z\end{array}\)

Vậy x tỉ lệ thuận với z theo hệ số tỉ lệ \(\frac{a}{b}\)

b. x và y tỉ lệ nghịch \( \Rightarrow x.y = a\,\,(a \ne 0)\)

y và z tỉ lệ thuận \( \Rightarrow y = bz\,\,(b \ne 0)\)

Từ đó \(xy = x.bz = a \Rightarrow xz = \frac{a}{b}\)

Vậy x và z tỉ lệ nghịch, hệ số là \(\frac{a}{b}\)

c. x và y tỉ lệ thuận \( \Rightarrow x = ay\)

y và z tỉ lệ nghịch \( \Rightarrow yz = b\,\,\,(b \ne 0)\)

Từ đó \(x = ay = a.\frac{b}{z} \Rightarrow xz = ab\)

Vậy x và z tỉ lệ nghịch, hệ số là ab.


Bài 3:

Cho biết x, y là hai đại lượng tỉ lệ nghịch \({x_1},{x_2}\) là hai giá trị của \(x;{y_1},{y_2}\) là hai giá trị tương ứng của y.

a. Tìm \({x_1},{x_2}\) biết \(2{x_1} = 5{y_1}\) và \(2{x_1} - 3{y_1} = 12\)

b. \({x_1} = 2{x_2},{y_2} = 10.\) Tính \({y_1}\).

Hướng dẫn giải:

a. \(2{x_1} = 5{y_1} \Rightarrow \frac{{{x_1}}}{5} =  \frac{{{y_1}}}{5}\)

\( \Rightarrow \frac{{{x_1}}}{5} = \frac{{{y_1}}}{2} = \frac{{2{x_1} - 3{y_1}}}{{10 - 6}} = \frac{{12}}{4} = 3\)

Vậy \({x_1} = 15,{y_1} = 6\)

b. Ta có  \({x_1}.{y_1} = {x_2}.{y_2}\)

mà \({x_1} = 2{x_2};{y_2} = 10\)

nên \(2{x_2}{y_1} = {x_2}.10\)

hay \({y_1} = \frac{{10{x_2}}}{{2{x_2}}} = 5\)

Vậy \({y_1} = 5\).

3. Luyện tập Bài 3 Chương 2 Đại số 7 

Qua bài giảng  Đại lượng tỉ tệ nghịch này, các em cần hoàn thành 1 số mục tiêu mà bài đưa ra như : 

  • Định nghĩa và tính chất đại lượng tỉ lệ nghịch

3.1 Trắc nghiệm về Đại lượng tỉ tệ nghịch

Các em có thể hệ thống lại nội dung kiến thức đã học được thông qua bài kiểm tra Trắc nghiệm Toán 7 Bài 3 cực hay có đáp án và lời giải chi tiết. 

Câu 2- Câu 5: Xem thêm phần trắc nghiệm để làm thử Online 

3.2. Bài tập SGK về Đại lượng tỉ tệ nghịch

Các em có thể xem thêm phần hướng dẫn Giải bài tập Toán 7 Bài 3 để giúp các em nắm vững bài học và các phương pháp giải bài tập.

Bài tập 12 trang 58 SGK Toán 7 Tập 1

Bài tập 13 trang 58 SGK Toán 7 Tập 1

Bài tập 14 trang 58 SGK Toán 7 Tập 1

Bài tập 15 trang 58 SGK Toán 7 Tập 1

4. Hỏi đáp Bài 3 Chương 2 Đại số 7

Trong quá trình học tập nếu có thắc mắc hay cần trợ giúp gì thì các em hãy comment ở mục Hỏi đáp, Cộng đồng Toán Chúng tôi sẽ hỗ trợ cho các em một cách nhanh chóng!

Chúc các em học tập tốt và luôn đạt thành tích cao trong học tập!

Tham khảo thêm

Bình luận

Có Thể Bạn Quan Tâm ?