Bài tập SGK Toán 12 Bài 2: Phương trình mặt phẳng.
-
Bài tập 1 trang 80 SGK Hình học 12
Viết phương trình mặt phẳng:
a) Đi qua điểm M(1; -2; 4) và nhận \(\overrightarrow{n}= (2; 3; 5)\) làm vectơ pháp tuyến.
b) Đi qua điểm A(0 ; -1 ; 2) và song song với giá của các vectơ \(\overrightarrow{u}(3; 2; 1)\)và \(\overrightarrow{v}(-3; 0; 1)\)
c) Đi qua ba điểm A(-3 ; 0 ; 0), B(0 ; -2 ; 0) và C(0 ; 0 ; -1).
-
Bài tập 2 trang 80 SGK Hình học 12
Viết phương trình mặt phẳng trung trực của đoạn thẳng AB với A(2;3;7) và B(4;1;3).
-
Bài tập 3 trang 80 SGK Hình học 12
a) Lập phương trình của các mặt phẳng tọa độ (Oxy), (Oyz), (Ozx).
b) Lập phương trình của các mặt phẳng đi qua điểm M(2; 6; -3) và lần lượt song song với các mặt phẳng tọa độ.
-
Bài tập 4 trang 80 SGK Hình học 12
Lập phương trình mặt phẳng :
a) Chứa trục Ox và điểm P(4 ; -1 ; 2);
b) Chứa trục Oy và điểm Q(1 ; 4 ;-3);
c) Chứa trục Oz và điểm R(3 ; -4 ; 7);
-
Bài tập 5 trang 80 SGK Hình học 12
Cho tứ diện có các đỉnh là A(5 ; 1 ; 3), B(1 ; 6 ; 2), C(5 ; 0 ; 4), D(4 ; 0 ; 6).
a) Hãy viết các phương trình mặt phẳng (ACD) và (BCD)
b) Hãy viết phương trình mặt phẳng (α) đi qua cạnh AB và song song với cạnh CD.
-
Bài tập 6 trang 80 SGK Hình học 12
Viết phương trình mặt phẳng \((\alpha )\) đi qua điểm M(2 ; -1 ; 2) và song song với mặt phẳng \((\beta )\) có phương trình: 2x - y + 3z + 4 = 0.
-
Bài tập 7 trang 80 SGK Hình học 12
Lập phương trình mặt phẳng (\(\alpha\)) đi qua hai điểm A( 1; 0 ; 1), B(5 ; 2 ; 3) và vuông góc với mặt phẳng: 2x - y + z - 7 = 0.
-
Bài tập 8 trang 80 SGK Hình học 12
Xác định giá trị của m và n để mỗi cặp mặt phẳng sau đây là một cặp mặt phẳng song song với nhau:
a) \(2x + my + 3z - 5 = 0\) và \(\small nx - 8y - 6z + 2 = 0\);
b) \(\small 3x - 5y + mz - 3 = 0\) và \(\small 2x + ny - 3z + 1 = 0\);
-
Bài tập 9 trang 81 SGK Hình học 12
Tính khoảng cách từ điểm A(2 ; 4 ; -3) lần lượt đến các mặt phẳng sau:
a) \(2x - y + 2z - 9 = 0\);
b) \(\small 12x - 5z + 5 = 0\) ;
c) \(\small x = 0\).
-
Bài tập 10 trang 81 SGK Hình học 12
Giải các bài toán sau đây bằng phương pháp tọa độ. Cho hình lập phương ABCD.A'B'C'D' cạnh bằng 1.
a) Chứng minh rằng hai mặt phẳng (AB'D') và (BC'D) song song với nhau.
b) Tính khoảng cách giữa hai mặt phẳng nói trên.
-
Bài tập 3.17 trang 103 SBT Hình học 12
Viết phương trình mặt phẳng \((\alpha )\) trong các trường hợp sau:
a) \((\alpha )\) đi qua điểm M(2;0; 1) và nhận \(\vec n = (1;1;1)\) làm vecto pháp tuyến ;
b) \((\alpha )\) đi qua điểm A(1; 0; 0) và song song với giá của hai vecto \(\vec u = (0;1;1),\vec v = ( - 1;0;2)\) ;
c) \((\alpha )\) đi qua ba điểm M(1;1;1), N(4; 3; 2), P(5; 2; 1).
-
Bài tập 3.18 trang 113 SBT Hình học 12
Viết phương trình mặt phẳng trung trực của đoạn thẳng AB với A(1; -2; 4), B(3; 6; 2).