Bài tập SGK Toán 11 Bài 1: Phương pháp quy nạp toán học.
-
Bài tập 1 trang 82 SGK Đại số & Giải tích 11
Chứng minh rằng với \(n \in N*\), ta có đẳng thức:
a) \(2 + 5+ 8+.... + 3n - 1 =\frac{n(3n+1)}{2}\);
b) \(\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + ... + \frac{1}{{{2^n}}} = \frac{{{2^n} - 1}}{{{2^n}}}\);
c) \(1^2 + 2^2 + 3^2 + ... + n^2 = \frac{n(n+1)(n+2)}{6}\).
-
Bài tập 2 trang 82 SGK Đại số & Giải tích 11
Chứng minh rằng với n ε N* ta luôn có:
a) \(n^3 + 3n^2 + 5n\) chia hết cho 3;
b) \(4n + 15n - 1\) chia hết cho 9;
c) \(n^3 + 11n\) chia hết cho 6.
-
Bài tập 3 trang 82 SGK Đại số & Giải tích 11
Chứng minh rằng với mọi số tự nhiên \(n \geq 2\), ta có các bất đẳng thức:
a) \(3^n > 3^n + 1\)
b) \(2^{n + 1} > 2n + 3\)
-
Bài tập 4 trang 82 SGK Đại số & Giải tích 11
Cho tổng \(S_n=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n(n+1)}\)với n ε N* .
a) Tính \(S_1, S_2, S_3\).
b) Dự đoán công thức tính tổng \(S_n\) và chứng minh bằng quy nạp.
-
Bài tập 5 trang 82 SGK Đại số & Giải tích 11
Chứng minh rằng số đường chéo của một đa giác lồi n cạnh là \(\frac{n(n-3)}{2}\)
-
Bài tập 3.1 trang 107 SBT Toán 11
Chứng minh các đẳng thức sau (với n ∈ N∗)
a) \(2 + 5 + 8 + ... + \left( {3n - 1} \right) = \frac{{n\left( {3n + 1} \right)}}{2}\)
b) \(3 + 9 + 27 + ... + {3^n} = \frac{1}{2}\left( {{3^{n + 1}} - 3} \right)\)
-
Bài tập 3.2 trang 107 SBT Toán 11
Chứng minh các đẳng thức sau (với n ∈ N∗)
a) Chứng minh \({1^2} + {3^2} + {5^2} + ... + {\left( {2n - 1} \right)^2} = \frac{{n\left( {4{n^2} - 1} \right)}}{3}\)
b) \({1^3} + {2^3} + {3^3} + ... + {n^3} = \frac{{{n^2}{{\left( {n + 1} \right)}^2}}}{4}\)
-
Bài tập 3.3 trang 107 SBT Toán 11
Chứng minh rằng với mọi n ∈ N∗ ta có:
a) 2n3 − 3n2 + n chia hết cho 6.
b) 11n + 1 + 122n−1 chia hết cho 133.
-
Bài tập 3.4 trang 107 SBT Toán 11
Chứng minh các bất đẳng thức sau (n ∈ N∗)
a) 2n + 2 > 2n + 5;
b) sin2nα + cos2nα ≤ 1.
-
Bài tập 3.5 trang 107 SBT Toán 11
Với giá trị nào của số tự nhiên n ta có
a) 2n > 2n + 1 ;
b) 2n > n2 + 4n + 5 ;
c) 3n > 2n + 7n ?
-
Bài tập 3.6 trang 107 SBT Toán 11
Cho tổng:
\({S_n} = \frac{1}{{1.5}} + \frac{1}{{5.9}} + \frac{1}{{9.13}} + ... + \frac{1}{{\left( {4n - 3} \right)\left( {4n + 1} \right)}}\)
a) Tính S1, S2, S3, S4;
b) Dự đoán công thức tính Sn và chứng minh bằng phương pháp quy nạp.
-
Bài tập 3.7 trang 107 SBT Toán 11
Xét mệnh đề chứa biến P(n): "10n - 1 < n + 2017 với n ∈ N∗"
Bằng phép thử ta có P(1), P(2), P(3), P(4) là đúng. Khẳng định nào sau đây là sai?
A. P(n) đúng với mọi số chẵn n ≤ 4
B. P(n) đúng với mọi số lẻ n < 4
C. P(n) đúng với mọi số n
D. P(n) đúng với mọi số n ≤ 4