Bài tập SGK Toán 11 Bài 1: Vectơ trong không gian.
-
Bài tập 1 trang 91 SGK Hình học 11
Cho hình lăng trụ tứ giác: ABCD.A'B'C'D'. Mặt phẳng (P) cắt các cạnh bên AA', BB', CC', DD' lần lượt tại I, K, L, M. xét các véctơ có các điểm đầu là các điểm I, K, L, M và có các điểm cuối là các đỉnh của hình lăng trụ. hãy chỉ ra các véctơ:
a) Các véctơ cùng phương với \(\overrightarrow{IA}\);
b) Các véctơ cùng hướng với \(\overrightarrow{IA}\);
c) Các véctơ ngược hướng với \(\overrightarrow{IA}\).
-
Bài tập 2 trang 91 SGK Hình học 11
Cho hình hộp ABCD.A'B'C'D'. Chứng minh rằng:
a) \(\overrightarrow{AB} + \overrightarrow{B'C'} + \overrightarrow{DD'} = \overrightarrow{AC'};\)
b) \(\overrightarrow{BD} - \overrightarrow{D'D} - \overrightarrow{B'D'} = \overrightarrow{BB'};\)
c) \(\overrightarrow{AC} + \overrightarrow{BA'} + \overrightarrow{DB} + \overrightarrow{C'D} = \overrightarrow{0}.\)
-
Bài tập 3 trang 91 SGK Hình học 11
Cho hình bình hành ABCD. Gọi S là một điểm nằm ngoài mặt phẳng chứa hình bình hành. Chứng minh rằng: \(\overrightarrow{SA}\) + \(\overrightarrow{SC}\) = \(\overrightarrow{SB}\) + \(\overrightarrow{SD}\).
-
Bài tập 4 trang 91 SGK Hình học 11
Cho hình tứ diện ABCD. Gọi M và N lần lượt là trủng điểm của AB và CD. Chứng minh rằng:
a) \(\overrightarrow{MN}=\frac{1}{2}\left ( \overrightarrow{AD}+\overrightarrow{BC} \right );\)
b) \(\overrightarrow{MN}=\frac{1}{2}\left ( \overrightarrow{AC}+\overrightarrow{BD} \right).\)
-
Bài tập 5 trang 92 SGK Hình học 11
Cho hình tứ diện ABCD. Hãy xác định hai điểm E, F sao cho:
a) \(\overrightarrow{AE}=\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{AD};\)
b) \(\overrightarrow{AF}=\overrightarrow{AB}+\overrightarrow{AC}-\overrightarrow{AD}.\)
-
Bài tập 6 trang 92 SGK Hình học 11
Cho hình tứ diện ABCD. Gọi G là trọng tâm tam giác ABC. Chứng minh rằng: \(\overrightarrow{DA}+\overrightarrow{DB}+\overrightarrow{DC}=3\overrightarrow{DG}.\)
-
Bài tập 7 trang 92 SGK Hình học 11
Gọi M và N lần lượt là trung điểm của các cạnh AC và BD của tứ diện ABCD. Gọi I là trung điểm của đoạn thẳng MN và P là một điểm bất kì trong không gian. Chứng minh rằng:
a) \(\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}+\overrightarrow{ID}=\overrightarrow{0}\)
b) \(\overrightarrow{PI}=\frac{1}{4}(\overrightarrow{PA}+\overrightarrow{PB}+\overrightarrow{PC}+\overrightarrow{PD})\)
-
Bài tập 8 trang 92 SGK Hình học 11
Cho hình lăng trụ tam giác ABC.A'B'C' có \(\overrightarrow{AA}\) = \(\overrightarrow{a}\), \(\overrightarrow{AB}\) = \(\overrightarrow{b}\), \(\overrightarrow{AC}\) = \(\overrightarrow{c}\). Hãy phân tích (hay biểu thị véctơ \(\overrightarrow{B'C}\), \(\overrightarrow{BC'}\) qua các véctơ \(\overrightarrow{a}\), \(\overrightarrow{b}\), \(\overrightarrow{c}\).
-
Bài tập 9 trang 92 SGK Hình học 11
Cho tam giác ABC. Lấy điểm S nằm ngoài mặt phẳng (ABC). Trên đoạn SA lấy điểm M sao cho \(\overrightarrow{MS}\) = \(-2\overrightarrow{MA}\) và trên đoạn BC lấy điểm N sao cho \(\overrightarrow{NB}=-\frac{1}{2}\overrightarrow{NC}.\) Chứng minh rằng ba véctơ \(\overrightarrow{AB}\), \(\overrightarrow{MN}\), \(\overrightarrow{SC}\) đồng phẳng.
-
Bài tập 10 trang 92 SGK Hình học 11
Cho hình hộp ABCD.EFGH. Gọi K là giao điểm của AH và DE, I là giao điểm của BH và DF. Chứng minh ba véctơ \(\overrightarrow{AC}, \overrightarrow{KI}, \overrightarrow{FG}\) đồng phẳng.
-
Bài tập 3.1 trang 129 SBT Hình học 11
Cho hình lập phương ABCD.A’B’C’D’ cạnh a. Gọi O và O’ theo thứ tự là tâm của hai hình vuông ABCD và A’B’C’D’.
a) Hãy biểu diễn các vectơ \(\overrightarrow {AO} ,\overrightarrow {AO'} \), theo các vectơ có điểm đầu và điểm cuối là các đỉnh của hình lập phương đã cho.
b) Chứng minh rằng \(\overrightarrow {AD} + \overrightarrow {D'C'} + \overrightarrow {D'A'} = \overrightarrow {AB} \)
-
Bài tập 3.2 trang 129 SBT Hình học 11
Trong không gian cho điểm O và bốn điểm A, B, C, D phân biệt và không thẳng hàng. Chứng minh rằng điều kiện cần và đủ để bốn điểm A, B, C, D tạo thành một hình bình hành là \(\overrightarrow {OA} + \overrightarrow {OC} = \overrightarrow {OB} + \overrightarrow {OD} \)