Đề bài Bài tập 4 trang 71 SGK Hình học 11
Cho hình chóp S.ABCD. Gọi \({A_{1}}^{}\) là trung điểm của cạnh SA và \({A_{2}}^{}\) là trung điểm của đoạn \(A{A_{1}}^{}\). Gọi \((\alpha )\) và \((\beta )\)là hai mặt phẳng song song với mặt phẳng (ABCD) và lần lượt đi qua \({A_{1}}^{}\), \({A_{2}}^{}\). Mặt phẳng \((\alpha )\) cắt các cạnh SB, SC, SD lần lượt tại \({B_{1}, {C_{1}, {D_{1}}^{}}^{}}^{}\). Mặt phẳng \((\beta )\) cắt các cạnh SB, SC, SD lần lượt tại \({B_{2}, {C_{2},{D_{2}}^{}}^{}}^{}\). Chứng minh:
a) \({B_{1}, {C_{1}, {D_{1}}^{}}^{}}^{}\) lần lượt là trung điểm của các cạnh SB, SC, SD
b) \({B_1}{B_2} = {B_2}B,\,\,{C_1}{C_2} = {C_2}C,\,\,{D_1}{D_2} = {D_2}D\)
c) Chỉ ra các hình chóp cụt có một đáy là tứ giác ABCD.
Hướng dẫn giải chi tiết
Xin lỗi, Hiện chưa có lời giải chi tiết, chúng tôi sẽ bổ sung sau