Bài tập SGK Toán 12 Bài 1: Hệ tọa độ trong không gian.
-
Bài tập 1 trang 68 SGK Hình học 12
Cho ba vectơ \(\overrightarrow{a}=(2; -5; 3)\), \(\overrightarrow{b}=(0; 2; -1)\), \(\overrightarrow{c}=(1; 7; 2)\).
a) Tính tọa độ của vectơ \(\overrightarrow{d}=4.\overrightarrow{a}-\frac{1}{3}\overrightarrow{b}+3\overrightarrow{c}\).
b) Tính tọa độ của vectơ \(\overrightarrow{e}=\overrightarrow{a}-4\overrightarrow{b}-2\overrightarrow{c}\).
-
Bài tập 2 trang 68 SGK Hình học 12
Cho ba điểm A = (1; -1; 1), B = (0; 1; 2), C = (1; 0; 1).
Tìm tọa độ trọng tâm G của tam giác ABC.
-
Bài tập 3 trang 68 SGK Hình học 12
Cho hình hộp ABCD.A'B'C'D' biết A = (1; 0; 1), B = (2; 1; 2), D = (1; -1; 1), C'=(4; 5; -5). Tính tọa độ các đỉnh còn lại của hình hộp.
-
Bài tập 4 trang 68 SGK Hình học 12
Tính:
a) \(\overrightarrow{a}.\overrightarrow{b}\) với \(\overrightarrow{a}(3; 0; -6),\overrightarrow{b}(2; -4; 0)\).
b) \(\overrightarrow{c}.\overrightarrow{d}\) với \(\overrightarrow{c}(1; -5; 2),\overrightarrow{d}(4; 3; -5)\).
-
Bài tập 5 trang 68 SGK Hình học 12
Tìm tâm và bán kính của các mặt cầu có phương trình sau đây:
a) \(\small x^2 + y^2 + z^2 - 8x - 2y + 1 = 0\).
b) \(\small 3x^2 + 3y^2 + 3z^2 - 6x + 8y + 15z - 3 = 0\).
-
Bài tập 6 trang 68 SGK Hình học 12
Lập phương trình mặt cầu trong hai trường hợp sau đây:
a) Có đường kính AB với A(4 ; -3 ; 7), B(2 ; 1 ; 3)
b) Đi qua điểm A = (5; -2; 1) và có tâm C(3; -3; 1)
-
Bài tập 3.1 trang 102 SBT Hình học 12
Trong không gian Oxyz cho ba vecto \(\vec a = (2; - 1;2),\vec b = (3;0;1),\vec c = ( - 4;1; - 1)\). Tìm tọa độ của các vecto \(\vec m\) và \(\vec n\) biết rằng:
a) \(\vec m = 3\vec a - 2\vec b + \vec c\)
b) \(\vec n = 2\vec a + \vec b + 4\vec c\)
-
Bài tập 3.2 trang 102 SBT Hình học 12
Trong không gian Oxyz cho vecto \(\vec a = (1; - 3;4)\).
a) Tìm y0 và z0 để cho vecto \(\vec b = (2;{y_0};{z_0})\) cùng phương với \(\vec a\)
b) Tìm tọa độ của vecto \(\vec c\) biết rằng \(\vec a\) và \(\vec c\) ngược hướng và \(|\overrightarrow {c|} = 2|\vec a|\)
-
Bài tập 3.3 trang 102 SBT Hình học 12
Trong không gian Oxyz cho điểm M có tọa độ (x0; y0 ; z0). Tìm tọa độ hình chiếu vuông góc của điểm M trên các mặt phẳng tọa độ (Oxy), (Oyz), (Ozx).
-
Bài tập 3.4 trang 102 SBT Hình học 12
Cho hai bộ ba điểm:
a) A = (1; 3; 1) , B = (0; 1; 2) , C = (0; 0; 1)
b) M = (1; 1; 1) , N = (-4; 3; 1) , P = (-9; 5; 1)
Hỏi bộ nào có ba điểm thẳng hàng?
-
Bài tập 3.5 trang 102 SBT Hình học 12
Trong không gian Oxyz, hãy tìm trên mặt phẳng (Oxz) một điểm M cách đều ba điểm A(1; 1; 1), B(-1; 1; 0), C(3; 1; -1).
-
Bài tập 3.6 trang 102 SBT Hình học 12
Cho hình tứ diện ABCD. Chứng minh rằng:
a) \(\overrightarrow {AC} + \overrightarrow {BD} = \overrightarrow {AD} + \overrightarrow {BC} \)
b) \(\overrightarrow {AB} = \frac{1}{2}\overrightarrow {AC} + \frac{1}{2}\overrightarrow {AD} + \frac{1}{2}\overrightarrow {CD} + \overrightarrow {DB} \)