Bài tập SGK Toán 12 Bài 1: Khái niệm về mặt tròn xoay.
-
Bài tập 1 trang 39 SGK Hình học 12
Cho đường tròn tâm O bán kính r nằm trên mặt phẳng (P). Từ những điểm M thuộc đường tròn này ta kẻ những đường thẳng vuông góc với (P). Chứng minh rằng những đường thẳng như vậy nằm trên một mặt trụ tròn xoay. Hãy xác định trục và bán kính của mặt trụ đó.
-
Bài tập 2 trang 39 SGK Hình học 12
Trong mỗi trường hợp sau đây, hãy gọi tên các hình tròn xoay hoặc khối tròn xoay sinh ra bởi:
a) Ba cạnh của hình chữ nhật khi quay quanh đường thẳng chứa cạnh thứ tư.
b) Ba cạnh của một tam giác cân khi quay quanh trục đối xứng nó.
c) Một tam giác vuông kể cả các điểm trong của tam giác vuông đó khi quay quanh đường thẳng chứa một cnah góc vuông.
d) Một hình chữ nhật kể cả các điểm trong của hình chữ nhật đó khi quay quanh đường thẳng chứa một cạnh.
-
Bài tập 3 trang 39 SGK Hình học 12
Cho hình nón tròn xoay có đường cao h = 20 cm, bán kính đáy r = 25 cm.
a) Tính diện tích xung quanh của hình nón đã cho.
b) Tính thể tích của khối nón được tạo bởi hình nón đó.
c) Một thiết diện đi qua đỉnh của hình nón có khoảng cách từ tâm của đáy đến mặt phẳng chứa thiết diện là 12 cm. Tính diện tích thiết diện đó.
-
Bài tập 4 trang 39 SGK Hình học 12
Trong không gian cho hai điểm A, B cố định và có độ dài AB = 20 cm. Gọi d là một đường thẳng thay đổi luôn luôn đi qua A và cách B một khoảng bằng 10 cm. Chứng tỏ rằng đường thẳng d luôn luôn nằm trên một mặt nón, hãy xác định trục và góc ở đỉnh của mặt nón đó.
-
Bài tập 5 trang 39 SGK Hình học 12
Một hình trụ có bán kính đáy r = 5cm và có khoảng cách giữa hai đáy bằng 7 cm.
a) Tính diện tích xung quanh của hình trụ và thể tích của khối trụ được tạo nên.
b) Cắt khối trụ bởi một mặt phẳng song song với trục và cách trục 3 cm. Hãy tính diện tích của thiết diện được tạo nên.
-
Bài tập 6 trang 39 SGK Hình học 12
Cắt một hình nón bằng một mặt phẳng qua trục của nó ta được thiết diện là một tam giác đều canh 2a. Tính diện tích xung quanh và thể tích của hình nón đó.
-
Bài tập 7 trang 39 SGK Hình học 12
Một hình trụ có bán kính r và chiều cao \(h = r \sqrt {3}\).
a) Tính diện tích xung quanh và diện tích toàn phần của hình trụ.
b) TÍnh thể tích khối trụ tạo nên bởi hình trụ đã cho.
c) Cho hai điểm A và B lần lượt nằm trên hai đường tròn đáy sao cho góc giữa đường thẳng AB và trục của hình trụ bằng 300. TÍnh khoảng cách giữa đường thẳng AB và trục của hình trụ
-
Bài tập 8 trang 40 SGK Hình học 12
Một hình trụ có hai đáy là hai hình tròn (O;r) và (O';r). Khoảng cách giữa hai đáy là \(\small OO' = r.\sqrt{3}.\) Một hình nón có đỉnh là O' và có đáy là hình tròn (O;r).
a) Gọi S1 là diện tích xung quanh của hình trụ và S2 là diện tích xung quanh của hình nón, hãy tính tỷ số \(\small \frac{S_2}{S_1}\).
b) Mặt xung quanh của hình nónchia khối trụ thành hai phần, hãy tính tỷ số thể tích hai phần đó.
-
Bài tập 9 trang 40 SGK Hình học 12
Căt hình nón đỉnh S bởi mặt phẳng đi qua trục ta được một tam giác vuông cân có cạnh huyền bằng \(a \sqrt {2}\).
a) Tính diện tích xuang quanh, diện tích đáy và thể tích của khối nón twong ứng.
b) Cho một dây cung BC và đường tròn đáy hình nón sao cho mặt phẳng (SBC) tạo với mặt phẳng chứa đáy hình nón một góc 60. Tính diện tích hình vuông và mặt phẳng đáy.
-
Bài tập 10 trang 40 SGK Hình học 12
Cho hình trụ có bán kính r và có chiều cao cũng bằng r. Một hình vuông ABCD có hai cạnh AB và CD lần lượt là các dây cung của hai đường tròn đáy, còn cạnh BC và AD không phải là đường sinh của hình trụ. Tính diện tích của hình vuông đó và cosin của góc giữa mặt phẳng chứa hình vuông và mặt phẳng đáy.
-
Bài tập 2.1 trang 46 SBT Hình học 12
Một hình nón tròn xoay có đỉnh là D, tâm của đường tròn đáy là O, đường sinh bằng l và có góc giữa đường sinh và mặt phẳng đáy bằng \(\alpha \).
a) Tính diện tích xung quanh của hình nón và thể tích khối nón được tạo nên.
b) Gọi I là một điểm trên đường cao DO của hình nón sao cho \(\frac{{DI}}{{DO}} = k(0 < k < l)\). Tính diện tích thiết diện qua I và vuông góc với trục của hình nón.
-
Bài tập 2.2 trang 47 SBT Hình học 12
Một hình nón tròn xoay có thiết diện qua trục là một tam giác vuông cân có cạnh bằng a.
a) Tính diện tích toàn phần và thể tích hình nón đó.
b) Một mặt phẳng đi qua đỉnh tạo với mặt phẳng đáy một góc 600. Tính diện tích thiết diện được tạo nên.