Bài kiểm tra
Đề thi vào lớp 10 năm 2021 môn Toán Trường THPT Quang Trung
1/50
120 : 00
Câu 3: Giá trị của \(\dfrac{1}{{\sqrt 5 + \sqrt 3 }} - \dfrac{1}{{\sqrt 5 - \sqrt 3 }}\) bằng
Câu 4: Rút gọn biểu thức \(Q = \dfrac{a}{{\sqrt {{a^2} - {b^2}} }} - \left( {1 + \dfrac{a}{{\sqrt {{a^2} - {b^2}} }}} \right):\dfrac{b}{{a - \sqrt {{a^2} - {b^2}} }}\) với a > b > 0
Câu 5: Rút gọn các biểu thức \(\sqrt {\dfrac{{2a}}{3}.} \sqrt {\dfrac{{3a}}{8}}\) với \(a \ge 0\)
Câu 7: Tính \(5xy\sqrt {\frac{{25{x^2}}}{{{y^6}}}} \left( {x < 0,y > 0} \right)\)
Câu 8: Tính \(\frac{x}{y}\sqrt {\frac{{{x^2}}}{{{y^4}}}} \left( {x > 0,y \ne 0} \right)\)
Câu 9: Điều kiện xác định của biểu thức \(\frac{1}{{\sqrt {2x - {x^2}} }}\) là ?
Câu 10: Điều kiện xác định của biểu thức \(\sqrt {7x - 4} \) là ?
Câu 11: Rút gọn: \(3\sqrt {5a} - \sqrt {20a} + 4\sqrt {45a} + \sqrt a \) với \(a \ge 0\)
Câu 12: Rút gọn: \(3\sqrt {5a} - \sqrt {20a} + 4\sqrt {45a} + \sqrt a \) với \(a \ge 0\)
Câu 13: Cho 2 đường thẳng d : y = 2x − 1; d ′ : y = x − 3. Đường thẳng nào đi qua giao điểm của d và d'?
Câu 14: Đường thẳng y = ax + b đi qua điểm (3;2). Khi đó 6a + 2b bằng:
Câu 15: Cho hàm số f(x) = 5,5x có đồ thị (C). Điểm nào sau đây thuộc đồ thị hàm số (C).
Câu 16: Cho hai hàm số f(x) = 2x2 và g(x) = 4x – 2. Có bao nhiêu giá trị của a để f(a) = g(a)
Câu 17: Tính hệ số góc của đường thẳng d: y = (2m - 4)x + 5 biết nó song song với đường thẳng d': 2x - y - 3 = 0.
Câu 18: Cho đường thẳng d: y = (m + 2)x - 5 đi qua điểm có A(-1; 2). Hệ số góc của đường thẳng d là bao nhiêu?
Câu 19: Tìm m để đường thẳng (d) : y = m2x + m (m ≠ 0) song song với đường thẳng (d ′) : y = 4x − 2.
Câu 20: Cho đường thẳng d : y = ax + b. Tìm giá trị của a, b sao cho đường thẳng d đi qua điểm A(0;-1) và song song với đường thẳng Δ : y = x + 2019.
Câu 21: Cho hàm số y = (5 - m)x + 10 . Tìm điều kiện của m để hàm số đã cho là hàm số bậc nhất?
Câu 23: Cho tam giác MNP vuông tại N. Hệ thức nào sau đây là đúng?
Câu 24: Cho tam giác ABC vuông tại A có đường cao AH (H thuộc BC). Biết góc ACB = 600 , CH = a. Tính độ dài AB và AC theo a
Câu 25: Cho tam giác ABC vuông tại A, BC = a, AC = b, AB = c. Khẳng định nào dưới đây đúng?
Câu 27: Cho tam giác ABC vuông tại A, kẻ đường cao AH . Biết AH = 12cm, BH = 9cm. Tính diện tích tam giác ABC
Câu 28: Cho tam giác ABC vuông tại A, đường cao AH. Gọi M, N theo thứ tự là trung điểm của AB, AC. Biết HM = 15cm, HN = 20cm. Tính HB, HC, AH.
Câu 29: Cho hàm số \(y = a{x^2},\,\,a \ne 0\). Khoanh tròn vào chữ cái trước câu trả lời đúng.
Câu 30: Cho đồ thị (P) có phương trình \(y = m{x^2}.\) Xác định giá trị của m để đồ thị (P) cắt đường thẳng: (D) y = x + 1 tại điểm có tung độ là 2.
Câu 31: Cho phương trình \(x^2 + 4x + 2m + 1 = 0\) ( (m ) là tham số). Giải phương trìng khi m=1
Câu 32: Cho phương trình \(x^2 + (a + b + c) x + (ab + bc + ca) = 0\) với (a,b,c ) là ba cạnh của một tam giác. Khẳng định nào sau đây là đúng?
Câu 33: Một ca nô chạy xuôi dòng sông từ A đến B rồi chạy ngược dòng từ B về A hết tất cả 7giờ 30 phút. Tính vận tốc thực của ca nô biết quãng đường sông AB dài 54km và vận tốc dòng nước là 3km/h
Câu 34: Một ôtô phải đi quãng đường AB dài 60 km trong một thời gian nhất định. Xe đi nửa quãng đường đầu với vận tốc hơn dự định là 10 km/h và đi nửa sau kém hơn dự đinh 6 km/h. Biết ôtô đã đến đúng như dự định. Tính thời gian người đó dự định đi quãng đường AB.
Câu 36: Nghiệm của phương trình \(\left( {2{x^2} + x - 4} \right)^2 - {\left( {2x - 1} \right)^2} = 0\) là:
Câu 37: Cho phương trình : \((m-1) x^{2}-2 m x+m-4=0\) có 2 nghiệm \(x_{1} ; x_{2}\) . Lập hệ thức liên hệ giữa \(x_{1} ; x_{2}\) sao cho chúng không phụ thuộc vào m.
Câu 38: Cho phương trình \(x^{2}-4 \sqrt{3} x+8=0\) có 2 nghiệm x1 ; x2 , không giải phương trình, tính \(\mathrm{Q}=\frac{6 x_{1}^{2}+10 x_{1} x_{2}+6 x_{2}^{2}}{5 x_{1} x_{2}^{3}+5 x_{1}^{3} x_{2}}\)
Câu 39: Nghiệm của phương trình \(x^{2}-7 x+10=0\) là?
Câu 40: Nghiệm của phương trình \(x^{2}-10 x+2=0\) là?
Câu 41: Cho tam giác ABC có \(\widehat B = {60^0}\) , đường trung tuyến AM, đường cao CH. Vẽ đường tròn ngoại tiếp BHM. Kết luận nào đúng khi nói về các cung HB;MB;MH của đường tròn ngoại tiếp tam giác MHB?
Câu 42: Cho đường tròn (O) đường kính AB và một cung AC có số đo nhỏ hơn 90o. Vẽ dây CD vuông góc với AB và dây DE song song với AB. Chọn kết luận sai?
Câu 43: Cho đường tròn (O) và hai dây cung AB,AC bằng nhau. Qua A vẽ một cát tuyến cắt dây BC ở D và cắt (O) ở E. Khi đó DA.DE bằng
Câu 44: Cho nửa đường tròn đường kính AB, dây MN có độ dài bằng bán kính R của đường tròn, M thuộc cung AN. Các tia AM và BN cắt nhau ở I, dây AN và BM cắt nhau ở K. Với vị trí nào của dây MN thì diện tích tam giác IAB lớn nhất? Tính diện tích đó theo bán kính R.
Câu 45: Cho nửa đường tròn (O) đường kính AB và một điểm C trên nửa đường tròn. Gọi D là một điểm trên đường kính AB; qua D kẻ đường vuông góc với AB cắt BC tại F, cắt AC tại E. Tiếp tuyến của nửa đường tròn tại Ccắt EF tại I.Khi đó
Câu 46: Khi quay nửa đường tròn, bán kính R = 12,5 cm một vòng quanh đường kính AB cố định, ta được một mặt cầu. Diện tích mặt cầu đó là:
Câu 47: Đường ống nối hai bể cá trong một thủy cung ở miền nam nước Pháp có dạng một hình trụ với độ dài \(30 m\). Dung tích của đường ống nói trên là \(1800000\) lít. Tính diện tích đáy của đường ống.
Câu 48: Người ta nhúng hoàn toàn một tượng đá nhỉ vào một lọ thủy tinh có nước dạng hình trụ. DIện tích đáy của lọ thủy tinh là \(12,8 cm^2\). Nước trong lọ dâng lên thêm \(8,5 mm\). Hỏi thể tích của tượng đá là bao nhiêu ?
Câu 49: Mẹ bạn Lan mua trái cây ở siêu thị gồm hai loại cam và nho. Biết rằng 1kg cam có giá 150 nghìn đồng, 1kg nho có giá 200 nghìn đồng. Mẹ bạn Lan mua 4kg cả hai loại trái cây hết tất cả 700 nghìn đồng. Hỏi mẹ bạn Lan đã mua bao nhiêu kg cam, bao nhiêu kg nho?
Câu 50: Cho (x;y) là nghiệm của hệ phương trình \(\left\{\begin{array}{l} 2 x-7 y=8 \\ 10 x+3 y=21 \end{array}\right.\). Giá trị của x+y là: