Bài kiểm tra
Đề thi vào lớp 10 năm 2021 môn Toán Trường THPT Phan Đình Phùng
1/50
120 : 00
Câu 1: Rút gọn biểu thức \(C = \left( {\dfrac{{\sqrt a }}{{\sqrt a - 1}} - \dfrac{{\sqrt a }}{{a - \sqrt a }}} \right):\dfrac{{\sqrt a + 1}}{{a - 1}}\) với \(a > 0\) và \(a \ne 1.\)
Câu 2: Giải phương trình \({x^4} + 3{x^2} - 4 = 0.\)
Câu 3: Cho đường thẳng \(d:\;y = \left( {m - 1} \right)x + n.\) Tìm các giá trị của \(m\) và \(n\) để đường thẳng \(d\) đi qua điểm \(A\left( {1;\; - 1} \right)\) và có hệ số góc bằng \( - 3.\)
Câu 4: Để phục vụ cho Festival Huế 2018, một cơ sở sản xuất nón lá dự kiến làm ra 300 chiếc nón lá trong một thời gian đã định. Do được bổ sung thêm nhân công nên mỗi ngày cơ sở đó làm ra được nhiều hơn 5 chiếc nón lá so với dự kiến ban đầu, vì vậy cơ sở sản xuất đã hoàn thành 300 chiếc nón lá sớm hơn 3 ngày so với thời gian đã định. Hỏi theo dự kiến ban đầu, mỗi ngày cơ sở đó làm được ra bao nhiêu chiếc nón lá? Biết rằng số chiếc nón lá làm ra mỗi ngày là bằng nhau và nguyên chiếc.
Câu 5: Cho phương trình \({x^2} + 2mx + {m^2} + m = 0\;\;\;\;\left( 1 \right)\) (với \(x\) là ẩn số). Giải phương trình (1) khi \(m = - 1.\)
Câu 6: Cho hình chữ nhật ABCD với AB = 2a, BC = a. Khi quay hình chữ nhật ABCD quanh cạnh AB một vòng ta được hình trụ có thể tích V1 và khi quay hình chữ nhật ABCD quanh cạnh BC một vòng thì được hình trụ có thể tích V2. Tính tỉ số \(\dfrac{{{V_1}}}{{{V_2}}}\)
Câu 8: Tính giá trị của biểu thức sau: \(B = \sqrt {{{\left( {\sqrt 3 - 1} \right)}^2}} + 1\)
Câu 9: Cho biểu thức \(P = \left( {\frac{{x - 6}}{{x + 3\sqrt x }} - \frac{1}{{\sqrt x }} + \frac{1}{{\sqrt x + 3}}} \right):\frac{{2\sqrt x - 6}}{{x + 1}}\) với \(x > 0,\;\;x \ne 9.\) Rút gọn biểu thức P.
Câu 10: Cho đường thẳng \(\left( d \right):\;\;y = - \dfrac{1}{2}x + 2.\) Tìm \(m\) để đường thẳng \(\left( \Delta \right):\;y = \left( {m - 1} \right)x + 1\) song song với đường thẳng \(\left( d \right).\)
Câu 11: Cho hệ phương trình: \(\left\{ \begin{array}{l}x + ay = 3a\\ - ax + y = 2 - {a^2}\end{array} \right.\;\;\;\left( I \right)\) với \(a\) là tham số. Giải hệ phương trình (I) khi \(a = 1.\)
Câu 12: Cho phương trình: \({x^2} - 2x + m - 3 = 0\;\;\;\left( 1 \right)\) với \(m\) là tham số. Giải phương trình \(\left( 1 \right)\) khi \(m = 0.\)
Câu 13: Cho α và β là góc nhọn bất kỳ thỏa mãn α + β = 90° . Chọn khẳng định đúng.
Câu 14: Tam giác ABC vuông tại A có \(\mathrm{AB}=12 \mathrm{cm} \text { và } \operatorname{tan} \hat{B}=\frac{1}{3}\) . Độ dài cạnh BC là:
Câu 15: Cho tam giác ABC vuông tại A có AC = 5cm, \(\widehat B = \;\alpha \) biết cotB = 2, 4. Tính AB, BC
Câu 16: Cho tam giác ABC vuông tại A có AB = 6cm, \(\widehat B = \;\alpha \), biết tanα = \(\frac{5}{{12}}\). Hãy tính BC, AC.
Câu 17: Cho ΔABC vuông tại A, AB = 12 cm, AC = 16 cm và đường phân giác AD, đường cao AH. Tính HA.
Câu 18: Đường thẳng nào sau đây không song song với đường thẳng y = 7x + 3?
Câu 19: Cho hệ phương trình \(\left\{ \begin{array}{l} y = ( - 2 - m)x + 2\\ y = (m + 4)x + 19 \end{array} \right.\). Tìm m để hệ phương trình trên có nghiệm duy nhất?
Câu 20: Nghiệm của hệ phương trình \(\left\{\begin{array}{l} 8 x+7 y=16 \\ 8 x-3 y=-24 \end{array}\right.\) là:
Câu 21: Nghiệm của hệ phương trình \(\left\{\begin{array}{l} \frac{2 x}{x+1}+\frac{y}{y+1}=3 \\ \frac{x}{x+1}+\frac{3 y}{y+1}=-1 \end{array}\right.\) là:
Câu 22: Tìm hai số tự nhiên có tổng là 1215 và nếu lấy số lớn chia cho số nhỏ thì được 3 và dư 15.
Câu 23: Hai đại biểu của trường A và trường B tham dự một buổi hội thảo. Mỗi đại biểu của trường A lân lượt bắt tay với từng đại biểu của trường B một lần. Tính số đại biểu của mỗi trường, biết số cái bắt tay bằng ba lần tổng số đại biểu của cả hai trường và số đại biểu của trường A nhiều hơn số đại biểu của trường B.
Câu 24: Rút gọn biểu thức: \(0,1.\sqrt{200}+2.\sqrt{0,08}+0,4.\sqrt{50}\)
Câu 25: Rút gọn biểu thức: \(\sqrt{20}-\sqrt{45}+3\sqrt{18}+\sqrt{72}\)
Câu 27: Rút gọn biểu thức \({\left( {3 - a} \right)^2} - \sqrt {0,2} .\sqrt {180{a^2}}\)
Câu 30: Tìm x, biết : \(x^3= 64\)
Câu 31: Tính \({\left( {\sqrt[3]{{ - \dfrac{1}{8}}}} \right)^3} + 3\dfrac{3}{4}\)
Câu 32: Đưa thừa số ra ngoài dấu căn: \(\sqrt {72{a^2}{b^4}} \) với \(a < 0\)
Câu 33: Đưa thừa số ra ngoài dấu căn: \(\sqrt {28{a^4}{b^2}} \) với \(b \ge 0.\)
Câu 34: Rút gọn biểu thức: \(4\sqrt 3 + \sqrt {27} - \sqrt {45} + \sqrt 5 \)
Câu 35: Phương trình \({x^2} = 12x + 288\) có nghiệm là
Câu 36: Phương trình \(4{x^2} - 2\sqrt 3 x = 1 - \sqrt 3 \) có nghiệm là:
Câu 37: Hai đội thợ quét sơn một tòa nhà. Nếu họ cùng làm thì trong 4 ngày xong việc. Nếu họ làm riêng thì đội I hoàn thành công việc nhanh hơn đội II là 6 ngày. Hỏi nếu làm riêng thì mỗi đội phải làm trong bao nhiêu ngày để xong việc?
Câu 38: Một xưởng may phải may xong 3000 áo trong thời gian quy định. Để hoàn thành sớm kế hoạch, mỗi ngày xưởng đã may được nhiều hơn 6 áo so với kế hoạch. Vì thế 5 ngày trước khi hết thời hạn, xưởng đã may được 2650 áo. Hỏi theo kế hoạch, mỗi ngày xưởng phải may được bao nhiêu áo?
Câu 39: Nghiệm của phương trình \(3 x^{2}-4 x-2=0\) là?
- A. \(\left[\begin{array}{l} x_{1}=-\frac{2+\sqrt{10}}{3} \\ x_{2}=-\frac{2-\sqrt{10}}{3} \end{array}\right.\)
- B. \(\left[\begin{array}{l} x_{1}=\frac{2+\sqrt{10}}{3} \\ x_{2}=\frac{2-\sqrt{10}}{3} \end{array}\right.\)
- C. \(\left[\begin{array}{l} x_{1}=\frac{-2+\sqrt{10}}{3} \\ x_{2}=\frac{2-\sqrt{10}}{3} \end{array}\right.\)
- D. \(\left[\begin{array}{l} x_{1}=\frac{2+\sqrt{10}}{3} \\ x_{2}=\frac{-2-\sqrt{10}}{3} \end{array}\right.\)
Câu 40: Nghiệm của phương trình \(x^{2}-6 x+8=0\) là?
Câu 41: Giải phương trình \({x^2} - \dfrac{{2x - 3{x^2}}}{{x - 1}} = \dfrac{{4x + 4}}{x} + 2x\)
Câu 42: Giải phương trình \(\dfrac{{3{x^2} - 15x}}{{{x^2} - 9}} = x - \dfrac{x}{{x - 3}}\)
- A. \(S = \left\{ {1;\dfrac{{3 + \sqrt {69} }}{2};\dfrac{{-3 - \sqrt {69} }}{2}} \right\}\)
- B. \(S = \left\{ {1;\dfrac{{-3 + \sqrt {69} }}{2};\dfrac{{3 - \sqrt {69} }}{2}} \right\}\)
- C. \(S = \left\{ {-1;\dfrac{{3 + \sqrt {69} }}{2};\dfrac{{3 - \sqrt {69} }}{2}} \right\}\)
- D. \(S = \left\{ {1;\dfrac{{3 + \sqrt {69} }}{2};\dfrac{{3 - \sqrt {69} }}{2}} \right\}\)
Câu 43: \(\text { Cho phương trình } x^{2}-8 x+15=0 \text { có hai nghiệm } x_{1} ; x_{2} \text { hãy tính }\frac{x_{1}}{x_{2}}+\frac{x_{2}}{x_{1}}\)
Câu 44: \(\text { Cho phương trình } x^{2}-8 x+15=0 \text { có hai nghiệm } x_{1} ; x_{2} \text { hãy tính }B=\frac{1}{x_{1}}+\frac{1}{x_{2}}\)
Câu 45: Trên mặt phẳng tọa độ Oxy, xác định vị trí tương đối của điểm A(- 1; - 1) và đường tròn tâm là gốc tọa độ O, bán kính R = 2 ,.
Câu 46: Cho tam giác ABC có các đường cao BD,CE . Chọn khẳng định đúng.
Câu 47: Cho đường tròn (O;10cm). Dây AB và CD song song, có độ dài lần lượt là 16cm và 12cm .Tính khoảng cách giữa hai dây.
Câu 48: Cho đường tròn (O), dây cung AB và CD với CD < AB. Giao điểm K của các đường thẳng AB và CD nằm ngoài đường tròn. Vẽ đường tròn (O;OK), đường tròn này cắt KA và KC lần lượt tại M và N . So sánh KM và KN.
Câu 49: Một mặt phẳng chứa trục OO’ của một hình trụ cắt hình trụ đó theo một hình chữ nhật có chiều dài 3 cm, chiều rộng 2 cm. Tính diện tích xung quanh và thể tích hình trụ.
- A. \({S_{xq}} = 6\pi\left( {c{m^2}} \right); V = 3\pi\left( {c{m^3}} \right)\)
- B. \({S_{xq}} = 3\pi\left( {c{m^2}} \right); V = 6\pi\left( {c{m^3}} \right)\)
- C. \({S_{xq}} = 3\pi\left( {c{m^2}} \right); V = 3\pi\left( {c{m^3}} \right)\)
- D. \({S_{xq}} = 6\pi\left( {c{m^2}} \right); V = 6\pi\left( {c{m^3}} \right)\)
Câu 50: Một hình trụ có thể tích 8m3 không đổi. Hỏi bán kính đáy bằng bao nhiêu để diện tích toàn phần của hình trụ đó là nhỏ nhất.