Bài kiểm tra
Đề thi vào lớp 10 năm 2021 môn Toán Trường THPT Phạm Hồng Thái
1/50
120 : 00
Câu 1: Rút gọn biểu thức \(A = {\left( {\sqrt 5 - \sqrt 2 } \right)^2} + \sqrt {40} \)
Câu 2: Giải hệ phương trình: \(\left\{ \begin{array}{l}9x + y = 11\\5x + 2y = 9\end{array} \right.\)
Câu 3: Một người dự định đi xe máy từ tỉnh A đến tỉnh B cách nhau 90 km trong một thời gian đã định. Sau khi đi được 1 giờ, người đó nghỉ 9 phút. Do đó, để đến tỉnh B đúng hẹn, người ấy phải tăng vận tốc thêm 4 km/h. Tính vận tốc lúc đấy của người đó.
Câu 4: Cho tam giác ABC có ba góc nhọn nội tiếp trong đường tròn (O) có bán kính \(R = 3cm\). Các tiếp tuyến với (O) tại B và C cắt nhau tại D. Gọi M là giao điểm của BC và OD. Biết \(OD = 5cm\). Tính diện tích của tam giác BCD.
Câu 5: Rút gọn biểu thức \(2\sqrt {75} + 3\sqrt {48} - 4\sqrt {27} \)
Câu 6: Giải hệ phương trình \(\left\{ \begin{array}{l}2x - y = 8\\3x + 2y = 5\end{array} \right.\)
Câu 7: Giải phương trình \(3{x^2} - 7x + 2 = 0\)
Câu 8: Cho phương trình \({x^2} - \left( {m + 1} \right)x + m - 2 = 0\) (với m là tham số). Tìm các số nguyên m để phương trình có nghiệm nguyên.
Câu 9: Cho tam giác ABC vuông tại A, đường cao AH \(\left( {H \in BC} \right)\) . Biết BH = 3,6cm và HC = 6,4 cm. Tính độ dài BC, AH, AB, AC.
Câu 11: Tính giá trị của biểu thức: \(N = \sqrt {{{\left( {\sqrt 5 - 1} \right)}^2}} - \sqrt 5 \).
Câu 12: Cho biểu thức \(P = 1 + \dfrac{{x - \sqrt x }}{{\sqrt x - 1}},\) với \(x \ge 0\) và \(x \ne 1\). Rút gọn biểu thức P
Câu 13: Cho parabol \(\left( P \right):\;y = {x^2}\) và đường thẳng \(\left( d \right):\;y = - x + 2.\) Tìm tọa độ giao điểm của parabol \(\left( P \right)\) và đường thẳng \(\left( d \right)\) bằng phép tính.
Câu 14: Giải hệ phương trình sau: \(\left\{ \begin{array}{l}3x + y = 5\\2x - y = 10\end{array} \right..\)
Câu 15: Cho phương trình \({x^2} - 2mx + 2m - 1 = 0\) (m là tham số) (1). Giải phương trình (1) với \(m = 2.\)
Câu 16: Tìm \(m\) để phương trình (1) có hai nghiệm \({x_1},\;{x_2}\) sao cho: \(\left( {x_1^2 - 2m{x_1} + 3} \right)\left( {x_2^2 - 2m{x_2} - 2} \right) = 50.\)
Câu 17: Quãng đường AB dài 50 km. Hai xe máy khởi hành cùng một lúc từ A đến B. Vận tốc xe thứ nhất lớn hơn vận tốc xe thứ hai 10 km/h, nên xe thứ nhất đến B trước xe thứ hai 15 phút. Tính vận tốc của mỗi xe.
Câu 18: Cho tam giác ABC vuông tại A, đường cao AH \(\left( {H \in BC} \right)\) . Biết AC = 8cm và BC = 10 cm. Tính độ dài AB.
Câu 21: Giải hệ phương trình \(\left\{ \begin{array}{l}3x - 2y = 4\\x + 3y = 5\end{array} \right..\)
Câu 22: Cho tam giác \(ABC\) vuông tại \(A\) có đường cao \(AH\;\left( {H \in BC} \right).\)Biết \(AB = 3a,\;\;AH = \dfrac{{12}}{5}a.\) Tính theo \(a\) độ dài \(AC\) và \(BC.\)
Câu 23: Tìm giá trị của m để phương trình \(2{x^2} - 5x + 2m - 1 = 0\) có hai nghiệm phân biệt \({x_1}\) và \({x_2}\) thỏa mãn: \(\dfrac{1}{{{x_1}}} + \dfrac{1}{{{x_2}}} = \dfrac{5}{2}.\)
Câu 24: Một đội máy xúc được thuê đào \(20000\;{m^3}\) đất để mở rộng hồ Dầu Tiếng. Ban đầu đội dự định mỗi ngày đào một lượng đất nhất định để hoàn thành công việc, nhưng sau khi đào được \(5000\;{m^3}\) thì đội được tăng cường thêm một số máy xúc nên mỗi ngày đào thêm được \(100\;{m^3},\) do đó đã hoàn thành công việc trong \(35\) ngày. Hỏi ban đầu đội dự định mỗi ngày đào bao nhiêu \({m^3}\) đất?
Câu 26: Rút gọn biểu thức \(P = \left( {\dfrac{{\sqrt x }}{{3 + \sqrt x }} + \dfrac{{9 + x}}{{9 - x}}} \right).\left( {3\sqrt x - x} \right)\) với \(x \ge 0\) và \(x \ne 9\)
Câu 27: Xác định các hệ số a, b để đồ thị hàm số \(y = ax + b\) đi qua hai điểm \(A\left( {2; - 2} \right)\) và \(B\left( { - 3;2} \right)\)
Câu 28: Giải phương trình \({x^2} - 4x + 4 = 0\)
Câu 29: Tìm giá trị của m để phương trình \({x^2} - 2\left( {m + 1} \right)x + {m^2} + 3 = 0\) có hai nghiệm \({x_1},{x_2}\) thỏa mãn \(\left| {{x_1}} \right| + \left| {{x_2}} \right| = 10.\)
Câu 30: Một xe ô tô đi từ A đến B theo đường quốc lộ cũ dài 156 km với vận tốc không đổi. Khi từ B về A, xe đi đường cao tốc mới nên quãng đường giảm được 36 km so với lúc đi và vận tốc tăng so với lúc đi là 32 km/h. Tính vận tốc ô tô khi đi từ A đến B, biết thời gian đi nhiều hơn thời gian về là 1 giờ 45 phút.
Câu 31: Rút gọn biểu thức: \(A = \sqrt {12} + \sqrt {27} - \sqrt {48} \).
Câu 32: Rút gọn biểu thức: \(B = \left( {\dfrac{1}{{\sqrt x - 1}} - \dfrac{1}{{\sqrt x + 1}}} \right):\dfrac{{x + 1}}{{x - 1}}\) với \(x \ge 0\) và \(x \ne \pm 1\)
Câu 33: Giải hệ phương trình \(\left\{ \begin{array}{l}x + 2y = 12\\3x - y = 1\end{array} \right.\)
Câu 34: Cho phương trình \({x^2} + 5x + m = 0\left( * \right)\) (m là tham số ). Giải phương trình (*) khi \(m = - 3\)
- A. \(S = \left\{ {\dfrac{{ - 5 - \sqrt {37} }}{2};\dfrac{{ - 5 + \sqrt {37} }}{2}} \right\}\)
- B. \(S = \left\{ {\dfrac{{ 5 - \sqrt {37} }}{2};\dfrac{{ 5 + \sqrt {37} }}{2}} \right\}\)
- C. \(S = \left\{ {\dfrac{{ - 2 - \sqrt {37} }}{2};\dfrac{{ - 2 + \sqrt {37} }}{2}} \right\}\)
- D. \(S = \left\{ {\dfrac{{ 2 - \sqrt {37} }}{2};\dfrac{{ 2 + \sqrt {37} }}{2}} \right\}\)
Câu 35: Cho phương trình \({x^2} + 5x + m = 0\left( * \right)\) (m là tham số). Tìm m để phương trình (*) có hai nghiệm \({x_1},{x_2}\) thỏa mãn \(9{x_1} + 2{x_2} = 18\)
Câu 36: Cho phương trình \(3{x^2} - x - 1 = 0\) có \(2\) nghiệm là \({x_1},{x_2}\). Hãy tính giá trị của biểu thức \(A = x_1^2 + x_2^2\).
Câu 37: Mối quan hệ giữa thang nhiệt độ F (Fahrenheit) và thang nhiệt độ C (Celsius) được cho bởi công thức \({T_F} = 1,8.{T_C} + 32,\) trong đó \({T_C}\) là nhiệt độ tính theo độ C và \({T_F}\) là nhiệt độ tính theo độ F. Ví dụ \({T_C} = {0^0}\) C tương ứng với \({T_F} = {32^0}\) F. Hỏi \({25^0}\) C tương ứng với bao nhiêu độ F ?
Câu 38: Năm học 2017 – 2018, trường THCS Tiến Thành có ba lớp 9 gồm 9A, 9B, 9C trong đó lớp 9A có 35 học sinh và lớp 9B có 40 học sinh. Tổng kết cuối năm, lớp 9A có 15 học sinh đạt danh hiệu học sinh giỏi, lớp 9B có 12 học sinh đạt danh hiệu học sinh giỏi, lớp 9C có 20% học sinh đạt danh hiệu học sinh giỏi và toàn khối 9 có 30% học sinh đạt danh hiệu học sinh giỏi. Hỏi lớp 9C có bao nhiêu học sinh?
Câu 39: Phương trình \({x^2} - 3x - 6 = 0\) có hai nghiệm \({x_1},\;\;{x_2}.\) Tổng \({x_1} + {x_2}\) bằng:
Câu 40: Đường thẳng \(y = x + m - 2\) đi qua điểm \(E\left( {1;\;0} \right)\) khi:
Câu 41: Cho tam giác \(ABC\) vuông tại \(A,\;\;\widehat {ACB} = {30^0},\;\;AB = 5cm.\) Độ dài cạnh \(AC\) là:
Câu 42: Hình vuông cạnh bằng 1, bán kính đường tròn ngoại tiếp hình vuông là:
Câu 43: Phương trình \({x^2} + x + a = 0\) (với x là ẩn, a là tham số) có nghiệm kép khi:
Câu 44: Cho \(a > 0,\) rút gọn biểu thức \(\dfrac{{\sqrt {{a^3}} }}{{\sqrt a }}\) ta được kết quả:
Câu 45: Giải hệ phương trình \(\left\{ \begin{array}{l}x + 2y = 5\\3x - y = 1\end{array} \right..\)
Câu 46: Tìm tọa độ giao điểm \(A,\;B\) của đồ thị hàm số \(y = {x^2}\) và \(y = x + 2.\) Gọi \(D,\;C\) lần lượt là hình chiếu vuông góc của \(A,\;B\) lên trục hoành. Tính diện tích tứ giác \(ABCD.\)
Câu 47: Nhân dịp Tết Thiếu nhi 01/06, một nhóm học sinh cần chia đều một số lượng quyển vở thành các phần quà để tặng cho các em nhỏ tại một mái ấm tình thương. Nếu mỗi phần quà giảm 2 quyển thì các em sẽ có thêm 2 phần quà nữa, còn nếu mỗi phần quà giảm 4 quyển thì các em sẽ có thêm 5 phần quà nữa. Hỏi ban đầu có bao nhiêu phần quà và mỗi phần quà có bao nhiêu quyển vở?
Câu 48: Cho các số thực dương a, b, c thỏa mãn điều kiện \(a + b + c = 3\). Tìm giá trị nhỏ nhất của biểu thức \(A = 4{a^2} + 6{b^2} + 3{c^2}\)
Câu 49: Tìm x để biểu thức \(A = \sqrt {2x - 1} \) có nghĩa.
Câu 50: Tính giá trị của biểu thức \(B = \sqrt 3 \left( {\sqrt {{3^2}.3} - 2\sqrt {{2^2}.3} + \sqrt {{4^2}.3} } \right).\)