Bài kiểm tra
Đề thi vào lớp 10 năm 2021 môn Toán Trường THPT Chu Văn An
1/50
120 : 00
Câu 1: Tìm \(x\) , biết \(2\sqrt x = 3.\)
Câu 2: Giải phương trình: \(43{x^2} - 2018x + 1975 = 0.\)
Câu 3: Cho hàm số \(y = \left( {a + 1} \right){x^2}.\) Tìm a để hàm số nghịch biến khi \(x < 0\) và đồng biến khi \(x > 0.\)
Câu 4: ho phương trình: \({x^2} - 2\left( {m + 1} \right)x + {m^2} + 2 = 0\,\,\left( 1 \right),\) m là tham số. Tìm m để \(x = 2\) là nghiệm của phương trình (1).
Câu 5: Trong mặt phẳng tọa độ \(Oxy\) cho các đường thẳng có phương trình: \(\left( {{d_1}} \right):\;\;y = x + 2,\;\;\left( {{d_2}} \right):\;\;y = - 2\) và \(\;\left( {{d_3}} \right):\;\;y = \left( {k + 1} \right)x + k.\) Tìm \(k\) để các đường thẳng trên đồng quy.
Câu 6: Tìm giá trị lớn nhất của biểu thức:\(A = \left( {\dfrac{1}{{1 - \sqrt x }} + \dfrac{{x + 2}}{{x\sqrt x - 1}} + \dfrac{{\sqrt x }}{{x + \sqrt x + 1}}} \right):\dfrac{{\sqrt x - 1}}{3}\) (với \(x \ge 0,x \ne 1\)).
Câu 8: Tìm điều kiện của \(x\) để \(\sqrt {x + 2} \) có nghĩa.
Câu 9: Giải hệ phương trình: \(\left\{ \begin{array}{l}x - 2y = 3\\3x + 2y = 1\end{array} \right..\)
Câu 10: Rút gọn biểu thức \(M = \left( {\dfrac{{x + \sqrt y + \sqrt {xy} - 1}}{{\sqrt x + 1}} + 1} \right).\left( {\sqrt x - \sqrt y } \right)\) (với \(x \ge 0,\;y \ge 0\)).
Câu 11: Giải phương trình \({x^2} - 2x - 8 = 0.\)
Câu 12: Cho phương trình \({x^2} + 6x + m = 0\) (với m là tham số). Tìm tất cả các giá trị của m để phương trình đã cho có hai nghiệm phân biệt.
Câu 13: Trong mặt phẳng tọa độ \(Oxy,\) cho đường thẳng \(\left( d \right):\;y = - 3x + b\) và parabol \(\left( P \right):\;\;y = 2{x^2}.\) Xác định hệ số b để (d) đi qua điểm \(A\left( {0;\;1} \right).\)
Câu 14: Để chuẩn bị cho mùa giải sắp tới, một vận động viên đua xe ở Đồng Tháp đã luyện tập leo dốc và đổ dốc trên cầu Cao Lãnh. Biết rằng đoạn leo dốc và đổ dốc ở hai bên đầu cầu có độ dài cùng bằng \(1km.\) Trong một lần luyện tập, vận động viên khi đổ dốc nhanh hơn vận tốc khi leo dốc là \(9km/h\) và tổng thời gian hoàn thành là \(3\) phút. Tính vận tốc leo dốc của vận động viên trong lần luyện tập đó.
Câu 15: Giải phương trình: \(\dfrac{{3x + 1}}{2} - x = 1\)
Câu 16: Giải hệ phương trình: \(\left\{ \begin{array}{l}3x = 17 - y\\x - 2y = 1\end{array} \right.\)
Câu 17: Tìm \(m\) để phương trình \({d_1}:\;y = \left( {{m^2} + 1} \right)x + 2m - 3\) cắt đường thẳng \(d:\;y = x - 3\) tại điểm \(A\) có hoành độ bằng \( - 1.\)
Câu 18: Rút gọn biểu thức \(A = \left( {\dfrac{1}{{x + \sqrt x }} - \dfrac{1}{{\sqrt x + 1}}} \right):\dfrac{{\sqrt x - 1}}{{x + 2\sqrt x + 1}} + 1\) với \(x > 0,\;\;x \ne 1.\)
Câu 19: Quãng đường Hải Dương – Hạ Long dài 100km. Một ô tô đi từ Hải Dương đến Hạ Long rồi nghỉ ở đó 8 giờ 20 phút, sau đó trở về Hải Dương hết tất cả 12 giờ. Tính vận tốc của ô tô lúc đi, biết vận tốc ô tô lúc về nhanh hơn vận tốc ô tô lúc đi 10 km/h.
Câu 20: Tìm \(m\) để phương trình \({x^2} - 2mx + {m^2} - 2 = 0\) (x là ẩn, m là tham số) có hai nghiệm phân biệt \({x_1},\;{x_2}\) thỏa mãn \(\left| {x_1^3 - x_2^3} \right| = 10\sqrt 2 .\)
Câu 21: Tính \(E = 2\sqrt {48} + 3\sqrt {75} - 2\sqrt {108} .\)
Câu 22: Rút gọn biểu thức \(P\left( x \right) = \left( {\dfrac{1}{{{x^2} - x}} + \dfrac{1}{{x - 1}}} \right):\dfrac{{x + 1}}{{{x^2} - 2x + 1}}.\)
Câu 23: Tìm các giá trị của tham số \(m\) để đường thẳng \(\left( {{d_m}} \right):\;\;y = \left( {{m^2} + m - 4} \right)x + m - 7\) song song với đường thẳng \(\left( d \right):\;\;y = 2x - 5.\)
Câu 24: Gọi \({x_1},\;{x_2}\) là hai nghiệm của phương trình \({x^2} - 2\left( {m - 1} \right)x - 2m - 7 = 0\) (\(m\) là tham số). Tìm các giá trị của \(m\) để biểu thức \(A = x_1^2 + x_2^2 + 6{x_1}{x_2}\) đạt giá trị nhỏ nhất.
Câu 25: Bạn Nam mua hai món hàng và phải trả tổng cộng 480000 đồng, trong đó đã tính cả 40000 đồng là thuế giá trị gia tăng (viết tắt là thuế VAT). Biết rằng thuế VAT đối với mặt hàng thứ nhất là 10%, thuế VAT đối với mặt hàng thứ hai là 8%. Hỏi nếu không kể thuế VAT thì bạn Nam phải trả mỗi món hàng là bao nhiêu tiền?
(Trong đó: Thuế VAT là thuế mà người mua hàng phải trả, người bán hàng thu và nộp cho Nhà nước. Giả sử thuế VAT đối với mặt hàng A được quy là 10%. Khi đó nếu giá bán của mặt hàng A là x đồng thì kể cả thuế VAT, người mua phải trả tổng cộng là \(x + 10\% x\) đồng).
Câu 26: Cho biểu thức \(Q\left( x \right) = \dfrac{{5{x^2} + 6x + 2018}}{{x + 1}}.\) Tìm các giá trị nguyên của \(x\) để \(Q\left( x \right)\) là số nguyên.
Câu 27: Thực hiện phép tính: \(\left( {\sqrt 3 + 1} \right).\dfrac{{\sqrt 3 - 3}}{{2\sqrt 3 }}.\)
Câu 28: Cho hàm số \(y = - \dfrac{1}{2}{x^2}\) có đồ thị \(\left( P \right)\) và đường thẳng \(\left( d \right):\;\;y = 3 - 4x.\) Lập phương trình đường thẳng \(\left( \Delta \right)\) song song với \(\left( d \right)\) và cắt \(\left( P \right)\) tại điểm \(M\) có hoành độ bằng \(2.\)
Câu 29: Rút gọn biểu thức sau: \(A = \left( {1 - \dfrac{{2\sqrt x }}{{3\sqrt x + 1}} - \dfrac{{1 - 2\sqrt x }}{{1 - 9x}}} \right):\left( {\dfrac{{6\sqrt x + 5}}{{3\sqrt x + 1}} - 2} \right)\)\(\;\;\;\left( {x \ge 0,\;\;x \ne \dfrac{1}{9}} \right).\)
Câu 30: Cho phương trình \({x^2} - x + m + 1 = 0\) (m là tham số). Giải phương trình với \(m = - 3.\)
Câu 31: Tìm tất cả các giá trị của m để phương trình đã cho có hai nghiệm \({x_1},\;{x_2}\) thỏa mãn điều kiện: \(\left| {{x_1} - {x_2}} \right| = 2.\)
Câu 32: Một tam giác vuông có chu vi bằng 24 cm. Độ dài hai cạnh góc vuông hơn kém nhau 2 cm. Tính diện tích tam giác vuông đó.
Câu 33: Cho hình nón có bán kính đáy bằng 3m, diện tích toàn phần bằng \(24\pi \,\,{m^2}\). Tính thể tích của hình nón.
Câu 34: Tìm giá trị nhỏ nhất của biểu thức \(T = 3{x^2} + 4{y^2} + 4xy + 2x - 4y + 2021\)
Câu 35: So sánh \(2\sqrt 3 + \sqrt {27} \) và \(\sqrt {74} .\)
Câu 36: Tìm giá trị của \(m\) để đồ thị hàm số \(y = 3x + m\) đi qua điểm \(A\left( {1;\;2} \right).\)
Câu 37: Cho phương trình \({x^2} + 2x + m - 1 = 0\;\;\;\;\left( * \right),\) trong đó \(m\) là tham số. Giải phương trình \(\left( * \right)\) khi \(m = - 2.\)
Câu 38: Nhân ngày sách Việt Nam, 120 học sinh khối 8 và 100 học sinh khối 9 cùng tham gia phong trào xây dựng “Tủ sách nhân ái”. Sau một thời gian phát động, tổng số sách cả hai khối đã quyên góp được là 540 quyển. Biết rằng mỗi học sinh khối 9 quyên góp nhiều hơn nhiều hơn mỗi học sinh khối 8 một quyển. Hỏi mỗi khối đã quyên góp được bao nhiêu quyển sách? (Mỗi học sinh trong cùng một khối quyên góp số lượng sách như nhau).
Câu 39: Điều kiện để biểu thức \(\sqrt {4 - 2x} \) xác định là:
Câu 40: Trên mặt phẳng tọa độ Oxy, đồ thị hàm số \(y = - 2x + 4\) cắt trục hoành tại điểm
Câu 41: Phương trình nào sau đây có hai nghiệm phân biệt và tích hai nghiệm là một số dương?
Câu 42: Trong các hàm số sau, hàm số nào đồng biến khi \(x < 0\) ?
Câu 43: Tất cả các giá trị của m để hai đường thẳng \(y = 2x + m + 2\) và \(y = \left( {{m^2} + 1} \right)x + 1\) song song với nhau là
Câu 44: Nếu tăng bán kính của một hình tròn lên gấp 3 lần thì diện tích của hình tròn đó tăng lên gấ
Câu 45: Một tam giác có độ dài ba cạnh lần lượt là 5 cm, 12 cm, 13 cm, bán kính đường tròn ngoại tiếp tam giác đó là bao nhiêu?
Câu 46: Hình trụ có bán kính đáy bằng 9cm, diện tích xung quanh bằng \(198\pi \,\,c{m^2}\) , chiều cao hình trụ đó bằng
Câu 47: Cho biểu thức \(M = \left( {\dfrac{{4x}}{{\sqrt x - 1}} - \dfrac{{\sqrt x - 2}}{{x - 3\sqrt x + 2}}} \right).\dfrac{{\sqrt x - 1}}{{{x^2}}}\) (với \(x > 0;x \ne 1;x \ne 4\)). Rút gọn biểu thức M.
Câu 48: Cho phương trình \({x^2} - mx - 4 = 0\;\;\;\left( 1 \right)\) (với m là tham số). Giải phương trình \(\left( 1 \right)\) với \(m = 3.\)
Câu 49: Giải hệ phương trình: \(\left\{ \begin{array}{l}\sqrt {xy} - \dfrac{4}{{\sqrt {xy} }} = 3\\x\left( {1 - y} \right) + 15 = 0\end{array} \right.\)
Câu 50: Cho đường tròn tâm \(O,\) bán kính \(R = 5\;cm\) có dây cung \(AB = 6\;cm.\) Tính khoảng cách \(d\) từ \(O\) tới đường thẳng \(AB.\)