Bài kiểm tra
Đề thi thử vào lớp 10 năm 2021 môn Toán Trường THCS Quốc Thái
1/50
120 : 00
Câu 1: Tìm x biết \(\sqrt {1 - 4x + 4{x^2}} = 5\)
Câu 2: Rút gọn biểu thức: \(\sqrt {{a^2}{{(a + 1)}^2}} \) với \(a > 0\)
Câu 3: Rút gọn biểu thức \( \displaystyle{{\sqrt {45m{n^2}} } \over {\sqrt {20m} }}\) (\(m > 0\) và \(n > 0\))
Câu 4: Số nào có căn bậc hai là \(\sqrt 5 \).
Câu 5: Rút gọn : \(\displaystyle M = {{\sqrt x } \over {\sqrt x - 6}} - {3 \over {\sqrt x + 6}} + {x \over {36 - x}}\)
Câu 7: Rút gọn : \(\displaystyle A = {{x\sqrt x - 1} \over {x - \sqrt x }} - {{x\sqrt x + 1} \over {x + \sqrt x }} + {{x + 1} \over {\sqrt x }}\) \(\left( {x > 0;\,x \ne 1} \right)\)
Câu 8: Tìm x, biết : \(\left( {\sqrt x + {1 \over {\sqrt x + 1}}} \right).\left( {1 - {{\sqrt x + 2} \over {x + \sqrt x + 1}}} \right) > 0\,\left( * \right)\)
Câu 9: Tính: \(\dfrac{\root 3 \of {135} }{\root 3 \of 5 } - \root 3 \of {54} .\root 3 \of 4 \)
Câu 11: Hàm số \(y = \left( {k - \dfrac{2}{3}} \right)x - \dfrac{1}{2}\) là hàm số nghịch biến trên R khi:
Câu 12: Cho hai hàm số bậc nhất \(y = 2x + 3k\) và \(y = \left( {2m + 1} \right)x + 2k - 3\). Tìm điều kiện đối với m và k để đồ thị của hai hàm số là hai đường thẳng trùng nhau.
Câu 13: Cho hai hàm số bậc nhất \(y = 2x + 3k\) và \(y = \left( {2m + 1} \right)x + 2k - 3\). Tìm điều kiện đối với m và k để đồ thị của hai hàm số là hai đường thẳng song song với nhau.
Câu 14: Cho đường thẳng \(y = \sqrt 3 x + \dfrac{3}{5}\) . Gọi \(\alpha \) là góc tạo bởi đường thẳng đó và trục Ox thì số đo của góc \(\alpha \) là:
Câu 15: Cho hai hàm số f( x ) = 2x2 và g( x ) = 4x - 2. Có bao nhiêu giá trị của a để f( a ) = g( a )
Câu 16: Cho hàm số y = mx - 2 có đồ thị là đường thẳng d1 và hàm số \( y = \frac{1}{2}x + 1\) có đồ thị là đường thẳng d2. Xác định m để hai đường thẳng d1 và d2 cắt nhau tại một điểm có hoành độ x = - 4.
Câu 17: Tìm nghiệm nguyên âm lớn nhất của phương trình - 5x + 2y = 7.
Câu 18: Tìm số nghiệm của hệ phương trình sau: \(\left\{ \begin{array}{l}4x - y = 8\\x - \dfrac{1}{4}y = 2\end{array} \right.\)
Câu 19: Nghiệm của hệ phương trình \(\left\{ \begin{array}{l}\dfrac{x}{2} - \dfrac{y}{3} = 1\\5x - 8y = 3\end{array} \right.\) là (a;b). Tính a + 2b?
Câu 20: Nghiệm của hệ phương trình \(\left\{\begin{array}{l} 7 a-4 b=\frac{5}{3} \\ 5 a+3 b=2 \frac{1}{6} \end{array}\right.\) là:
Câu 21: Vì có thành tích học tập tốt, mẹ thưởng cho hai anh em Bình và An lần lượt là 250000 đồng và 150000 đồng. Hai anh em cùng thi đua tiết kiệm, Bình để dành mỗi tuần 20000 đồng, còn An để dành 30000 đồng mỗi tuần. Hỏi sau bao lâu thì tổng số tiền của An có được bằng tổng số tiền của Bình?
Câu 22: Tìm độ dài cạnh của hình chữ nhật có chu vi là 34 cm và chiều dài hơn chiều rộng là 5 cm.
Câu 23: Hệ số a, b, c của phương trình \(\dfrac{2}{5}{x^2} + 2x - 7 = 3x + \dfrac{1}{2}\) là:
Câu 24: Cho (P): \(y = - \dfrac{1}{2}{x^2}\). Viết phương trình đường thẳng (d): y = ax+b, biết đường thẳng (d) song song với (d’): \(y = \dfrac{1}{2}x\) và cắt (P) tại điểm M có hoành độ là -2.
Câu 25: Cho hàm số \(y = a{x^2}(a \ne 0)\). Xác định a, biết rằng đồ thị của hàm số cắt đường thẳng (d): y = 3x - 4 tại điểm A có hoành độ -2.
Câu 26: Trên mặt phẳng tọa độ cho parabol (P): \(y = a{x^2}\). Biết (P) đi qua điểm M(2; -1). Tìm hệ số a
Câu 27: Nghiệm của phương trình \(3{x^2} + 5x + 2 = 0\) là:
Câu 28: Phương trình \(6{x^2} + x - 5 = 0\) có nghiệm là:
Câu 29: Tính \(\Delta '\) của phương trình \({x^2} - 2\left( {m - 1} \right)x + {m^2} = 0\)
Câu 30: \(\text { Cho phương trình } \mathrm{x}^{2}-(\mathrm{m}+5) \mathrm{x}-\mathrm{m}+6=0(1)\). Tìm các giá trị của m để phương trình (1) có một nghiệm x=-2
Câu 31: Một ca nô xuôi dòng từ A đến B cách nhau 24 km. Cùng lúc đó, một bè nứa cùng trôi từ A về B. Khi đến B, ca nô quay lại ngay và gặp bè nứa tại địa điểm C cách A là 8 km. Biết tốc độ của dòng nước là 4 km/h. Hãy tính tốc độ của ca nô khi dòng nước đứng yên.
Câu 32: Phương trình \(5{x^3} - {x^2} - 5x + 1 = 0\) có nghiệm là:
Câu 33: Cho tam giác ABC vuông tại A có AB = 3cm, AC = 4cm. Tính độ dài đường cao AH của tam giác ABC.
Câu 34: Cho ΔABC vuông tại A đường cao AH, AB = 3 cm, BC = 6 cm. Gọi E, F lần lượt là hình chiếu vuông góc của H trên AB và AC. Tính AH
Câu 35: Một chiếc máy bay đang bay lên với vận tốc 500km/h . Đường bay lên tạo với phương ngang một góc 300. Hỏi sau 1,2 phút kể từ lúc cất cánh, máy bay đạt được độ cao là bao nhiêu?
Câu 36: Một hình cầu có số đo diện tích (đơn vị m2) bằng số đo thể tích (đơn vị m3). Tính bán kính hình cầu, diện tích mặt cầu và thể tích hình cầu đó.
Câu 37: Cho nửa đường tròn tâm O, đường kính AB = 2R, Ax và By là hai tiếp tuyến với nửa đường tròn tại A và B. Lấy trên tia Ax điểm M rồi vẽ tiếp tuyến MP cắt By tại N. Tính tỉ số \(\frac{{{S_{MON}}}}{{{S_{APB}}}}\) khi \( AM = \frac{R}{2}\)
Câu 38: Một hình nón có bán kính đáy bằng r và diện tích xung quanh gấp đôi diện tích đáy. Tính thể tích của hình nón theo r.
Câu 39: Một hình nón có diện tích xung quanh bằng 960 cm2, chu vi đáy bằng 48 cm. Đường sinh của hình nón đó bằng:
Câu 40: Diện tích toàn phần của một hình trụ có chu vi đường tròn đáy là 12 cm và chiều cao là 4 cm là:
Câu 41: Một hình nó có đường sinh l = 20cm, diện tích xung quanh \({S_{xq}} = {\rm{ }}753,6{\rm{ }}c{m^2}\) . Khi đó, bán kính đáy của hình nón bằng (lấy \(\pi = 3,14\))
Câu 42: Khi quay hình tam giác vuông \(ABC\) một vòng quanh cạnh góc vuông \(AB\) cố định, ta được một hình nón. Biết rằng \(AB = 4cm; AC = 3cm\). Diện tích xung quanh của hình nón đó bằng:
Câu 43: Giá trị của biểu thức \(\dfrac{1}{2+\sqrt{3}}+\dfrac{1}{2-\sqrt{3}}\) bằng:
Câu 44: Rút gọn biểu thức: \(M={\left(\dfrac{1}{a -\sqrt a} +\dfrac{1}{\sqrt a -1}\right)} : \dfrac{\sqrt a +1}{a -2\sqrt a+1}\) với \(a > 0\) và \( a \ne 1\).
Câu 45: Rút gọn biểu thức: \(\dfrac{a+b}{b^{2}}\sqrt{\dfrac{a^{2}b^{4}}{a^{2}+2ab+b^{2}}} \) với \(a + b > 0\) và \(b ≠ 0\)
Câu 46: Tìm x biết: \(\sqrt {9x} - \sqrt {36x} + \sqrt {121x} < 8\,\,\,\,\,(2)\)
Câu 47: Tìm x, biết : \(\sqrt {9x + 9} - 2\sqrt {{{x + 1} \over 4}} = 4\,\,\,\,\,\,\,\left( 1 \right)\)
Câu 48: Rút gọn : \(A = \sqrt {16x + 16} - \sqrt {9\left( {x + 1} \right)} \)\(\,+ \sqrt {25x + 25} \,\,\,\,\left( {x \ge - 1} \right)\)
Câu 50: Tìm x, biết: \(\sqrt {9{x^2}} = 2x + 1\)