Đề thi thử vào lớp 10 năm 2021 môn Toán Trường THCS Quốc Thái

  • 120 phút
  • Làm Bài

Câu hỏi Trắc nghiệm (50 câu):

  • Câu 1:

    Mã câu hỏi: 61743

    Tìm x biết \(\sqrt {1 - 4x + 4{x^2}}  = 5\)

    • A.\(x = -2\) và \(x = 3.\)
    • B.\(x = 2\) và \(x = 3.\)
    • C.\(x = -2\) và \(x = -3.\)
    • D.\(x = 2\) và \(x = -3.\)
  • Câu 2:

    Mã câu hỏi: 61745

    Rút gọn biểu thức: \(\sqrt {{a^2}{{(a + 1)}^2}} \) với \(a > 0\)

    • A.a(a + 1)
    • B.a(a - 1)
    • C.2(a + 1)
    • D.2(a - 1)
  • Câu 3:

    Mã câu hỏi: 61747

    Rút gọn biểu thức \( \displaystyle{{\sqrt {45m{n^2}} } \over {\sqrt {20m} }}\) (\(m > 0\) và \(n > 0\))

    • A.\({{3n} \over 4}\)
    • B.\({{n} \over 3}\)
    • C.\({{n} \over 2}\)
    • D.\({{3n} \over 2}\)
  • Câu 4:

    Mã câu hỏi: 61749

    Số nào có căn bậc hai là \(\sqrt 5 \).

    • A.\(\sqrt 5 \)
    • B.5
    • C.10
    • D.-\(\sqrt 5 \)
  • Câu 5:

    Mã câu hỏi: 61751

    Rút gọn : \(\displaystyle M = {{\sqrt x } \over {\sqrt x  - 6}} - {3 \over {\sqrt x  + 6}} + {x \over {36 - x}}\)

    • A.\( { \over {\sqrt x  - 6}}  \)
    • B.\( {2 \over {\sqrt x  - 6}}  \)
    • C.\( {3 \over {\sqrt x  - 6}}  \)
    • D.\( {4 \over {\sqrt x  - 6}}  \)
  • Câu 6:

    Mã câu hỏi: 61753

    \(\sqrt {25x}  - \sqrt {16x}  = 9\) khi \(x\) bằng

    • A.1
    • B.3
    • C.9
    • D.81
  • Câu 7:

    Mã câu hỏi: 61754

    Rút gọn : \(\displaystyle A = {{x\sqrt x  - 1} \over {x - \sqrt x }} - {{x\sqrt x  + 1} \over {x + \sqrt x }} + {{x + 1} \over {\sqrt x }}\) \(\left( {x > 0;\,x \ne 1} \right)\)

    • A.\({{{{\left( {\sqrt x  - 1} \right)}^2}} \over {\sqrt x }} \)
    • B.\({{{{\left( {\sqrt x  + 2} \right)}^2}} \over {\sqrt x }} \)
    • C.\({{{{\left( {\sqrt x  + 1} \right)}^2}} \over {\sqrt x }} \)
    • D.\({{{{\left( {\sqrt x  - 2} \right)}^2}} \over {\sqrt x }} \)
  • Câu 8:

    Mã câu hỏi: 61756

    Tìm x, biết : \(\left( {\sqrt x  + {1 \over {\sqrt x  + 1}}} \right).\left( {1 - {{\sqrt x  + 2} \over {x + \sqrt x  + 1}}} \right) > 0\,\left( * \right)\) 

    • A.\(x < 1\).
    • B.\(x > 0\).
    • C.\(x > 1\).
    • D.\(x < 0\).
  • Câu 9:

    Mã câu hỏi: 61758

    Tính: \(\dfrac{\root 3 \of {135} }{\root 3 \of 5 } - \root 3 \of {54} .\root 3 \of 4 \)

    • A.-3
    • B.-2
    • C.0
    • D.1
  • Câu 10:

    Mã câu hỏi: 61760

    Tính: \(\root 3 \of {27}  - \root 3 \of { - 8}  - \root 3 \of {125} \)

    • A.0
    • B.1
    • C.2
    • D.3
  • Câu 11:

    Mã câu hỏi: 61762

    Hàm số \(y = \left( {k - \dfrac{2}{3}} \right)x - \dfrac{1}{2}\) là hàm số nghịch biến trên R khi:

    • A.\(k = \dfrac{3}{4}\)
    • B.\(k = \dfrac{5}{6}\)
    • C.\(k = \dfrac{4}{5}\)
    • D.\(k = \dfrac{1}{2}\)
  • Câu 12:

    Mã câu hỏi: 61764

    Cho hai hàm số bậc nhất \(y = 2x + 3k\) và \(y = \left( {2m + 1} \right)x + 2k - 3\). Tìm điều kiện đối với m và k để đồ thị của hai hàm số là hai đường thẳng trùng nhau.

    • A.\(m = -\dfrac{1}{2}\) và \(k =  3\).
    • B.\(m =- \dfrac{1}{2}\) và \(k =  - 3\).
    • C.\(m = \dfrac{1}{2}\) và \(k =   3\).
    • D.\(m = \dfrac{1}{2}\) và \(k =  - 3\).
  • Câu 13:

    Mã câu hỏi: 61766

    Cho hai hàm số bậc nhất \(y = 2x + 3k\) và \(y = \left( {2m + 1} \right)x + 2k - 3\). Tìm điều kiện đối với m và k để đồ thị của hai hàm số là hai đường thẳng song song với nhau.

    • A.\(m = \dfrac{1}{2}\) và \(k \ne  - 3\).
    • B.\(m = \dfrac{1}{2}\) và \(k \ne   3\).
    • C.\(m =- \dfrac{1}{2}\) và \(k \ne  - 3\).
    • D.\(m =- \dfrac{1}{2}\) và \(k \ne   3\).
  • Câu 14:

    Mã câu hỏi: 61768

    Cho đường thẳng \(y = \sqrt 3 x + \dfrac{3}{5}\) . Gọi \(\alpha \) là góc tạo bởi đường thẳng đó và trục Ox thì số đo của góc \(\alpha \) là:

    • A.30o
    • B.150o
    • C.60o
    • D.120o
  • Câu 15:

    Mã câu hỏi: 61769

    Cho hai hàm số f( x ) = 2x2 và g( x ) = 4x - 2. Có bao nhiêu giá trị của a để f( a ) = g( a )

    • A.0
    • B.1
    • C.2
    • D.3
  • Câu 16:

    Mã câu hỏi: 61770

    Cho hàm số y = mx - 2 có đồ thị là đường thẳng d1 và hàm số \( y = \frac{1}{2}x + 1\) có đồ thị là đường thẳng d2. Xác định m để hai đường thẳng dvà dcắt nhau tại một điểm có hoành độ x =  - 4.

    • A. \( m = - \frac{1}{4}\)
    • B. \( m = \frac{1}{4}\)
    • C. \( m = \frac{1}{2}\)
    • D. \( m = - \frac{1}{2}\)
  • Câu 17:

    Mã câu hỏi: 61771

    Tìm nghiệm nguyên âm lớn nhất của phương trình - 5x + 2y = 7.

    • A.(−7;−14)
    • B.(−1;−2)
    • C.(−3;−4)
    • D.(−5;−9)
  • Câu 18:

    Mã câu hỏi: 61772

    Tìm số nghiệm của hệ phương trình sau: \(\left\{ \begin{array}{l}4x - y = 8\\x - \dfrac{1}{4}y = 2\end{array} \right.\)

     

    • A.0
    • B.1
    • C.2
    • D.Vô số
  • Câu 19:

    Mã câu hỏi: 61773

    Nghiệm của hệ phương trình \(\left\{ \begin{array}{l}\dfrac{x}{2} - \dfrac{y}{3} = 1\\5x - 8y = 3\end{array} \right.\) là (a;b). Tính a + 2b?

    • A.4
    • B.5
    • C.6
    • D.7
  • Câu 20:

    Mã câu hỏi: 61774

    Nghiệm của hệ phương trình \(\left\{\begin{array}{l} 7 a-4 b=\frac{5}{3} \\ 5 a+3 b=2 \frac{1}{6} \end{array}\right.\) là:

    • A. \(\begin{array}{l} (\frac{-2}{5}; \frac{1}{5}) \end{array}\)
    • B. \(\begin{array}{l} (\frac{1}{3}; \frac{1}{6}) \end{array}\)
    • C. \(\begin{array}{l} (\frac{4}{7}; \frac{-2}{3}) \end{array}\)
    • D. \(\begin{array}{l} (\frac{-11}{7}; \frac{9}{5}) \end{array}\)
  • Câu 21:

    Mã câu hỏi: 61775

    Vì có thành tích học tập tốt, mẹ thưởng cho hai anh em Bình và An lần lượt là 250000 đồng và 150000 đồng. Hai anh em cùng thi đua tiết kiệm, Bình để dành mỗi tuần 20000 đồng, còn An để dành 30000 đồng mỗi tuần. Hỏi sau bao lâu thì tổng số tiền của An có được bằng tổng số tiền của Bình?

    • A.10 tuần
    • B.9 tuần
    • C.7 tuần
    • D.6 tuần
  • Câu 22:

    Mã câu hỏi: 61776

    Tìm độ dài cạnh của hình chữ nhật có chu vi là 34 cm và chiều dài hơn chiều rộng là 5 cm.

    • A.CD: 11cm, CR: 6cm
    • B.CD: 10cm, CR: 5cm
    • C.CD: 12cm, CR: 7cm
    • D.CD: 13cm, CR: 8cm
  • Câu 23:

    Mã câu hỏi: 61777

    Hệ số a, b, c của phương trình \(\dfrac{2}{5}{x^2} + 2x - 7 = 3x + \dfrac{1}{2}\) là:

    • A.\(a = \dfrac{3}{5};b =  - 1;c =   \dfrac{{15}}{2}\)
    • B.\(a = \dfrac{3}{5};b =   1;c =  - \dfrac{{15}}{2}\)
    • C.\(a = \dfrac{3}{5};b =  - 1;c =  - \dfrac{{15}}{2}\)
    • D.\(a = -\dfrac{3}{5};b =  - 1;c =  - \dfrac{{15}}{2}\)
  • Câu 24:

    Mã câu hỏi: 61778

    Cho (P): \(y = - \dfrac{1}{2}{x^2}\). Viết phương trình đường thẳng (d): y = ax+b, biết đường thẳng (d) song song với (d’): \(y = \dfrac{1}{2}x\) và cắt (P) tại điểm M có hoành độ là -2.

    • A. \(y = \dfrac{1}{2}x - 1\)
    • B. \(y = \dfrac{1}{2}x + 1\)
    • C. \(y =- \dfrac{1}{2}x - 1\)
    • D. \(y =- \dfrac{1}{2}x + 1\)
  • Câu 25:

    Mã câu hỏi: 61779

    Cho hàm số \(y = a{x^2}(a \ne 0)\). Xác định a, biết rằng đồ thị của hàm số cắt đường thẳng (d): y  = 3x - 4 tại điểm A có hoành độ -2.

    • A. \(a = \dfrac{{ 5}}{2}\)
    • B. \(a = \dfrac{{ - 5}}{2}\)
    • C. \(a = \dfrac{{ 3}}{2}\)
    • D. \(a = \dfrac{{ - 3}}{2}\)
  • Câu 26:

    Mã câu hỏi: 61780

    Trên mặt phẳng tọa độ cho parabol (P): \(y = a{x^2}\). Biết (P) đi qua điểm M(2; -1). Tìm hệ số a

    • A. \(a = \dfrac{{ 1}}{4}\)
    • B. \(a = \dfrac{{ - 1}}{4}\)
    • C. \(a = \dfrac{{ - 1}}{2}\)
    • D. \(a = \dfrac{{ 1}}{2}\)
  • Câu 27:

    Mã câu hỏi: 61781

    Nghiệm của phương trình \(3{x^2} + 5x + 2 = 0\) là:

    • A.\({x_1} =   \dfrac{2}{3}; {x_2} =  1\)
    • B.\({x_1} =  - \dfrac{2}{3}; {x_2} =  1\)
    • C.\({x_1} =  - \dfrac{2}{3}; {x_2} = - 1\)
    • D.\({x_1} =   \dfrac{2}{3}; {x_2} = - 1\)
  • Câu 28:

    Mã câu hỏi: 61782

    Phương trình \(6{x^2} + x - 5 = 0\) có nghiệm là:

    • A.\({x_1} = \dfrac{5}{6}; {x_2} =  1\)
    • B.\({x_1} = \dfrac{5}{6}; {x_2} = - 1\)
    • C.\({x_1} = \dfrac{-5}{6}; {x_2} = - 1\)
    • D.\({x_1} = \dfrac{-5}{6}; {x_2} = 1\)
  • Câu 29:

    Mã câu hỏi: 61783

    Tính \(\Delta '\) của phương trình \({x^2} - 2\left( {m - 1} \right)x + {m^2} = 0\)

    • A.- 2m + 1
    • B.2m + 1
    • C.- 2m - 1
    • D.2m - 1
  • Câu 30:

    Mã câu hỏi: 61784

     \(\text { Cho phương trình } \mathrm{x}^{2}-(\mathrm{m}+5) \mathrm{x}-\mathrm{m}+6=0(1)\). Tìm các giá trị của m để phương trình (1) có một nghiệm x=-2

    • A.m=15
    • B.m=-20
    • C.m=32
    • D.m=17
  • Câu 31:

    Mã câu hỏi: 61785

    Một ca nô xuôi dòng từ A đến B cách nhau 24 km. Cùng lúc đó, một bè nứa cùng trôi từ A về B. Khi đến B, ca nô quay lại ngay và gặp bè nứa tại địa điểm C cách A là 8 km. Biết tốc độ của dòng nước là 4 km/h. Hãy tính tốc độ của ca nô khi dòng nước đứng yên.

    • A.15 km/h
    • B.30 km/h
    • C.25 km/h
    • D.20 km/h
  • Câu 32:

    Mã câu hỏi: 61786

    Phương trình \(5{x^3} - {x^2} - 5x + 1 = 0\) có nghiệm là:

    • A.\(x =  - 1;x = 1;x = \dfrac{-1}{5}.\)
    • B.\(x =  - 2;x = 1;x = \dfrac{1}{5}.\)
    • C.\(x =   2;x = 1;x = \dfrac{1}{5}.\)
    • D.\(x =  - 1;x = 1;x = \dfrac{1}{5}.\)
  • Câu 33:

    Mã câu hỏi: 61787

    Cho tam giác ABC vuông tại A có AB = 3cm, AC = 4cm. Tính độ dài đường cao AH của tam giác ABC.

    • A. \(AH = \frac{{12}}{7}\)
    • B. \(AH = \frac{{5}}{2}\)
    • C. \(AH = \frac{{12}}{5}\)
    • D. \(AH = \frac{{7}}{2}\)
  • Câu 34:

    Mã câu hỏi: 61788

    Cho ΔABC vuông tại A đường cao AH, AB = 3 cm, BC = 6 cm. Gọi E, F lần lượt là hình chiếu vuông góc của H trên AB và AC. Tính AH

    • A. \(AH = \frac{{3\sqrt 3 }}{2}cm\)
    • B. \(AH = 3\sqrt 3 cm\)
    • C. \(AH = \frac{{\sqrt 3 }}{2}cm\)
    • D. \(AH = \frac32cm\)
  • Câu 35:

    Mã câu hỏi: 61789

    Một chiếc máy bay đang bay lên với vận tốc 500km/h . Đường bay lên tạo với phương ngang một góc 300. Hỏi sau 1,2 phút kể từ lúc cất cánh, máy bay đạt được độ cao là bao nhiêu?

    • A.7km
    • B.6km
    • C.5km
    • D.8km
  • Câu 36:

    Mã câu hỏi: 61790

    Một hình cầu có số đo diện tích (đơn vị m2) bằng số đo thể tích (đơn vị m3). Tính bán kính hình cầu, diện tích mặt cầu và thể tích hình cầu đó.

    • A.R = 3cm; S = 36cm2; V = 36cm3
    • B.R = 6cm; S = 36cm2; V = 36cm3
    • C.R = 3cm; S = \(36\pi\)cm2; V = \(36\pi\)cm3
    • D.R = 6cm; S = \(36\pi\)cm2; V = \(36\pi\)cm3
  • Câu 37:

    Mã câu hỏi: 61791

    Cho nửa đường tròn tâm O, đường kính AB = 2R, Ax và By là hai tiếp tuyến với nửa đường tròn tại A và B. Lấy trên tia Ax điểm M rồi vẽ tiếp tuyến MP cắt By tại N. Tính tỉ số \(\frac{{{S_{MON}}}}{{{S_{APB}}}}\) khi \( AM = \frac{R}{2}\)

    • A.25/16
    • B.2/16
    • C.5/16
    • D.16/25
  • Câu 38:

    Mã câu hỏi: 61792

    Một hình nón có bán kính đáy bằng r và diện tích xung quanh gấp đôi diện tích đáy. Tính thể tích của hình nón theo r.

    • A. \(\frac{1}{3}\pi {r^3}\)
    • B. \(\sqrt 3 \pi {r^3}\)
    • C. \(\frac{{\sqrt 3 }}{3}\pi {r^3}\)
    • D. \(\frac{{\sqrt 3 }}{2}\pi {r^3}\)
  • Câu 39:

    Mã câu hỏi: 61793

    Một hình nón có diện tích xung quanh bằng 960 cm2, chu vi đáy bằng 48 cm. Đường sinh của hình nón đó bằng:

    • A. \(4\pi cm\)
    • B.20cm
    • C. \(40\pi cm\)
    • D.40cm
  • Câu 40:

    Mã câu hỏi: 61794

    Diện tích toàn phần của một hình trụ có chu vi đường tròn đáy là 12 cm  và chiều cao là 4 cm là:

    • A. \(\frac{{180}}{\pi }(c{m^2})\)
    • B. 48 + \(\frac{{36}}{\pi }(c{m^3})\)
    • C. 48 + \(\frac{{72}}{\pi }(c{m^2})\)
    • D. \(\frac{{280}}{\pi }(c{m^2})\)
  • Câu 41:

    Mã câu hỏi: 61795

    Một hình nó có đường sinh l = 20cm, diện tích xung quanh  \({S_{xq}} = {\rm{ }}753,6{\rm{ }}c{m^2}\) . Khi đó, bán kính đáy của hình nón bằng  (lấy \(\pi  = 3,14\))

    • A.9 cm
    • B.12 cm
    • C.14 cm
    • D.15 cm
  • Câu 42:

    Mã câu hỏi: 61796

    Khi quay hình tam giác vuông \(ABC\) một vòng quanh cạnh góc vuông \(AB\) cố định, ta được một hình nón. Biết rằng \(AB = 4cm; AC = 3cm\). Diện tích xung quanh của hình nón đó bằng:

    • A.\(12\pi \,\,c{m^2}\)
    • B.\(15\pi \,\,c{m^2}\)
    • C.\(16\pi \,\,c{m^2}\)
    • D.\(20\pi \,\,c{m^2}\)
  • Câu 43:

    Mã câu hỏi: 61797

    Giá trị của biểu thức \(\dfrac{1}{2+\sqrt{3}}+\dfrac{1}{2-\sqrt{3}}\) bằng:

    • A.\(\dfrac{1}{2}\)
    • B.1
    • C.-4
    • D.4
  • Câu 44:

    Mã câu hỏi: 61798

    Rút gọn biểu thức: \(M={\left(\dfrac{1}{a -\sqrt a} +\dfrac{1}{\sqrt a -1}\right)} : \dfrac{\sqrt a +1}{a -2\sqrt a+1}\) với \(a > 0\) và \( a \ne 1\). 

    • A.\(1 +\dfrac{1}{\sqrt a}\)
    • B.\(1 -\dfrac{1}{\sqrt a}\)
    • C.\(2 -\dfrac{1}{\sqrt a}\)
    • D.\(2+\dfrac{1}{\sqrt a}\)
  • Câu 45:

    Mã câu hỏi: 61799

    Rút gọn biểu thức: \(\dfrac{a+b}{b^{2}}\sqrt{\dfrac{a^{2}b^{4}}{a^{2}+2ab+b^{2}}} \) với \(a + b > 0\) và \(b ≠ 0\)

    • A.|a|
    • B.a
    • C.-a
    • D.2a
  • Câu 46:

    Mã câu hỏi: 61800

    Tìm x biết: \(\sqrt {9x}  - \sqrt {36x}  + \sqrt {121x}  < 8\,\,\,\,\,(2)\)

    • A.\(-1 \le x < 1\)
    • B.\(0 \le x < 1\)
    • C.\(0 \le x < 2\)
    • D.\(0 \le x < 3\)
  • Câu 47:

    Mã câu hỏi: 61801

    Tìm x, biết : \(\sqrt {9x + 9}  - 2\sqrt {{{x + 1} \over 4}}  = 4\,\,\,\,\,\,\,\left( 1 \right)\)

    • A.\(x=1\)
    • B.\(x=2\)
    • C.\(x=3\)
    • D.\(x=4\)
  • Câu 48:

    Mã câu hỏi: 61802

    Rút gọn : \(A = \sqrt {16x + 16}  - \sqrt {9\left( {x + 1} \right)}  \)\(\,+ \sqrt {25x + 25} \,\,\,\,\left( {x \ge  - 1} \right)\)

    • A.\( 3\sqrt {x + 1} \)
    • B.\( 4\sqrt {x + 1} \)
    • C.\( 5\sqrt {x + 1} \)
    • D.\( 6\sqrt {x + 1} \)
  • Câu 49:

    Mã câu hỏi: 61803

    Rút gọn rồi tính \(\sqrt {\sqrt {{{( - 5)}^8}} } \)

    • A.3x = 2
    • B.x = 0
    • C.x = 1
    • D.x = 2
  • Câu 50:

    Mã câu hỏi: 61804

    Tìm x, biết: \(\sqrt {9{x^2}}  = 2x + 1\)

    • A.\(x = 1\) và \(\displaystyle x =  - {1 \over 5}\)
    • B.\(x = 1\) và \(\displaystyle x =   {1 \over 5}\)
    • C.\(x = 1\) và \(\displaystyle x =  - {2 \over 5}\)
    • D.\(x = 1\) và \(\displaystyle x =  - {3 \over 5}\)

Bình luận

Có Thể Bạn Quan Tâm ?