Bài kiểm tra
Đề thi thử vào lớp 10 năm 2021 môn Toán Trường THCS Nguyễn Du
1/40
90 : 00
Câu 1: Tìm x biết \(\dfrac{5}{3}\sqrt {15x} - \sqrt {15x} - 2 = \dfrac{1}{3}\sqrt {15x} \)
Câu 2: Tính: \(2\sqrt {{{\left( {\sqrt 2 - 3} \right)}^2}} + \sqrt {2{{\left( { - 3} \right)}^2}} - 5\sqrt {{{\left( { - 1} \right)}^4}}\)
Câu 3: Giá trị của \(\dfrac{1}{{\sqrt 5 + \sqrt 3 }} - \dfrac{1}{{\sqrt 5 - \sqrt 3 }}\) bằng
Câu 4: Rút gọn: \(\left( {1 + \dfrac{{a + \sqrt a }}{{\sqrt a + 1}}} \right)\left( {1 - \dfrac{{a - \sqrt a }}{{\sqrt a - 1}}} \right)\) với \(a \ge 0\) và \(a \ne 1\)
Câu 5: Rút gọn \(\dfrac{{{{\left( {\sqrt a - \sqrt b } \right)}^3} + 2a\sqrt a + b\sqrt b }}{{a\sqrt a + b\sqrt b }} + \dfrac{{3\left( {\sqrt {ab} - b} \right)}}{{a - b}}\) với \(a > 0,\,\,b > 0,\,\,a \ne b\)
Câu 6: Với những giá trị nào của k thì hàm số bậc nhất \(y = \left( {5 - k} \right)x + 1\) nghịch biến ?
Câu 7: Với những giá trị nào của m thì hàm số bậc nhất \(y = \left( {m - 1} \right)x + 3\) đồng biến ?
Câu 8: Cho hàm số bậc nhất \(y = \left( {1 - \sqrt 5 } \right)x - 1\). Tính giá trị của y khi \(x = 1 + \sqrt 5 \)
Câu 10: Một hình chữ nhật có các kích thước là 20cm và 30cm. Người ta bớt mỗi kích thước của nó đi x (cm) được hình chữ nhật mới có chu vi là y (cm). Hãy lập công thức tính y theo x.
Câu 11: Hai cặp số (-1 ; 1) và (-1 ; -2) là hai nghệm của một phương trình bậc nhất hai ẩn. Tập nghiệm của phương trình đó là:
- A. \(S = \left\{ {\left( {x\,\,;\,\,1} \right)\left| {x \in R} \right.} \right\}\)
- B. \(S = \left\{ {\left( { - 1\,\,;\,\,y} \right)\left| {y \in R} \right.} \right\}\)
- C. \(S = \left\{ {\left( {x\,\,;\,\, - 2} \right)\left| {x \in R} \right.} \right\}\)
- D. \(S = \left\{ {\left( { - 1\,\,;\,\,1} \right);\left( { - 1\,\,;\,\, - 2} \right)} \right\}\)
Câu 12: Phương trình bậc nhất hai ẩn 2x + 0y = 6 có tập nghiệm là:
Câu 13:
Câu 14: Cho hệ phương trình \(\left\{ \begin{array}{l}2x = - 4\\3y + 6 = 0\end{array} \right.\)
Câu 15: Một chuyển động đi từ A đến B với vận tốc 50m/ph rồi đi tiếp từ B đến C với vận tốc 45m/ph. Tổng cộng, vật đó đi được quãng đường dài 165 m. Tính thời gian đi trên mỗi đoạn đường AB và BC, biết rằng thời gian vật đi trên đoạn AB ít hơn thời gian vật đi trên đoanh đường BC là 30 giây.
Câu 17: Giải phương trình: \(2{x^2} + \sqrt 2 x = 0\)
Câu 18: Giải phương trình \({x^2} - \dfrac{{2x - 3{x^2}}}{{x - 1}} = \dfrac{{4x + 4}}{x} + 2x\)
Câu 19:
- A. \(S = \left\{ {1;\dfrac{{3 + \sqrt {69} }}{2};\dfrac{{-3 - \sqrt {69} }}{2}} \right\}\)
- B. \(S = \left\{ {1;\dfrac{{-3 + \sqrt {69} }}{2};\dfrac{{3 - \sqrt {69} }}{2}} \right\}\)
- C. \(S = \left\{ {-1;\dfrac{{3 + \sqrt {69} }}{2};\dfrac{{3 - \sqrt {69} }}{2}} \right\}\)
- D. \(S = \left\{ {1;\dfrac{{3 + \sqrt {69} }}{2};\dfrac{{3 - \sqrt {69} }}{2}} \right\}\)
Câu 20:
Câu 21: Cho tam giác ABC vuông tại A, kẻ đường cao AH . Biết AH = 12cm, BH = 9cm. Tính diện tích tam giác ABC
Câu 22: Cho ΔABC cân tại A, kẻ đường cao AH và CK. Biết AH = 7, 5cm; CK = 12cm. Tính BC, AB.
Câu 23: Cho tam giác ABC vuông tại A, đường cao AH. Gọi M, N theo thứ tự là trung điểm của AB, AC. Biết HM = 15cm, HN = 20cm. Tính HB, HC, AH.
Câu 24: Cho tam giác ABC vuông tại A có AC = 5cm, ∠B = α biết cotB = 2, 4. Tính AB, BC
Câu 25: Cho tam giác ABC vuông tại A có AB = 6cm, ∠B = α, biết tanα = \(\frac{5}{{12}}\). Hãy tính BC, AC.
Câu 27: Trên mặt phẳng tọa độ Oxy, xác định vị trí tương đối của điểm A(- 3; - 4) và đường tròn tâm là gốc tọa độ O, bán kính R = 3.
Câu 28: Thành phố Đà Lạt nằm vào khoảng 11o58’ vĩ độ Bắc. Mỗi vòng kinh tuyến của Trái Đất dài 40 000 km. Hãy tính độ dài cung kinh tuyến từ Đà Lạt đến xích đạo.
Câu 29: Cho hai đường tròn đồng tâm có khoảng cách ngắn nhất giữa hai điểm thuộc hai đường tròn bằng 1m. Tính hiệu các chu vi của hai đường tròn.
Câu 30: Thể tích của một hình trụ bằng \(972\pi \,c{m^3}.\) Nếu bán kính đáy hình trụ là \(9cm\) thì chiều cao của hình trụ là:
Câu 31: Đường ống nối hai bể cá trong một thủy cung ở miền nam nước Pháp có dạng một hình trụ với độ dài \(30 m\). Dung tích của đường ống nói trên là \(1800000\) lít. Tính diện tích đáy của đường ống.
Câu 32: Người ta nhúng hoàn toàn một tượng đá nhỉ vào một lọ thủy tinh có nước dạng hình trụ. DIện tích đáy của lọ thủy tinh là \(12,8 cm\)2. Nước trong lọ dâng lên thêm \(8,5 mm\). Hỏi thể tích của tượng đá là bao nhiêu ?
Câu 33: Một hình nó có đường sinh l = 20cm, diện tích xung quanh \({S_{xq}} = {\rm{ }}753,6{\rm{ }}c{m^2}\) . Khi đó, bán kính đáy của hình nón bằng (lấy \(\pi = 3,14\))
Câu 34: Khi quay hình tam giác vuông \(ABC\) một vòng quanh cạnh góc vuông \(AB\) cố định, ta được một hình nón. Biết rằng \(AB = 4cm; AC = 3cm\). Diện tích xung quanh của hình nón đó bằng:
Câu 35: Giải phương trình: \({x^2} - 2\sqrt {11} x + 11 = 0\)
Câu 36: Phân tích thành nhân tử \({x^2} - 3\)
Câu 37: Rút gọn: \(\dfrac{{a\sqrt b + b\sqrt a }}{{\sqrt {ab} }}:\dfrac{1}{{\sqrt a - \sqrt b }} \) với a, b dương và \(a \ne b\)
Câu 38: Tính: \(\left( {\dfrac{1}{2}\sqrt {\dfrac{1}{2}} - \dfrac{3}{2}\sqrt 2 + \dfrac{4}{5}\sqrt {200} } \right):\dfrac{1}{8}\)
Câu 40: Sắp xếp theo thứ tự tăng dần \(6\sqrt 2 ,\,\,\sqrt {38} ,\,\,3\sqrt 7 ,\,\,2\sqrt {14}\).