Bài kiểm tra
Đề thi thử vào lớp 10 năm 2021 môn Toán Trường THCS Lê Hồng Phong
1/40
90 : 00
Câu 1: Với a > 0, biểu thức \(\dfrac{{2x}}{{\sqrt {2a} }}\) được biến đổi thành
Câu 2: Với x < 0, y < 0, biểu thức \(\sqrt {\dfrac{{{x^3}}}{y}} \) được biến đổi thành
Câu 3: Rút gọn \(\dfrac{2}{{2a - 1}}\sqrt {5{a^2}\left( {1 - 4a + 4{a^2}} \right)}\) với a > 0,5.
Câu 4: Rút gọn \(\dfrac{2}{{{x^2} - {y^2}}}\sqrt {\dfrac{{3{{\left( {x + y} \right)}^2}}}{2}} \) với \(x \ge 0;\,\,y \ge 0;\,\,x \ne y\)
Câu 5: Rút gọn \(N = \left( {\dfrac{{\sqrt x - 2}}{{x - 1}} - \dfrac{{\sqrt x + 2}}{{x + 2\sqrt x + 1}}} \right).\dfrac{{1 - x}}{{\sqrt {2x} }}\) (với \(x > 0,\,\,x \ne 1\))
Câu 6: Rút gọn \(\dfrac{{{{\left( {\sqrt a - \sqrt b } \right)}^3} + 2a\sqrt a + b\sqrt b }}{{a\sqrt a + b\sqrt b }} + \dfrac{{3\left( {\sqrt {ab} - b} \right)}}{{a - b}}\) với \(a > 0,\,\,b > 0,\,\,a \ne b\)
Câu 7: Rút gọn \(M = \left( {\dfrac{{\sqrt x + 1}}{{x + 2\sqrt x + 1}} - \dfrac{{\sqrt x - 2}}{{x - 1}}} \right).\dfrac{{\sqrt x + 1}}{{\sqrt x }}\) với \(x > 0,\,\,x \ne 1\).
Câu 8: Rút gọn: \(\left( {\dfrac{{a\sqrt a + b\sqrt b }}{{\sqrt a + \sqrt b }} - \sqrt {ab} } \right){\left( {\dfrac{{\sqrt a + \sqrt b }}{{a - b}}} \right)^2}\) với \(a \ge 0,\,\,b \ge 0,\,\,a \ne b\)
Câu 9: Cho hàm số bậc nhất \(y = \left( {1 - \sqrt 5 } \right)x - 1\). Tính giá trị của x khi \(y = \sqrt 5 \)
Câu 10: Cho hàm số bậc nhất \(y = \left( {1 - \sqrt 5 } \right)x - 1\). Tính giá trị của y khi \(x = 1 + \sqrt 5 \)
Câu 11: Với những giá trị nào của m thì hàm số \(y = \dfrac{{m + 1}}{{m - 1}}x + 3,5\) là hàm số bậc nhất ?
Câu 12: Với những giá trị nào của m thì hàm số \(y = \sqrt {5 - m} \left( {x - 1} \right)\) hàm số bậc nhất ?
Câu 13: Cho hàm số y = 2x + 2. Tìm khẳng định đúng?
Câu 14: Cho hai hàm số f(x) = x2 và g(x) = 5x - 4 . Có bao nhiêu giá trị của a để f(a) = g(a)
Câu 15: Cho hai hàm số f(x) = -2x3 và h(x) = 10 - 3x . So sánh f(-2) và h(-1)
Câu 17: Trong các cặp số (- 2;1); (0;2); ( - 1;0); (1,5;3); (4; - 3) có bao nhiêu cặp số không là nghiệm của phương trình 3x + 5y = - 3
Câu 18: Trong các cặp số (0;2),( - 1; - 8), (1;1), (3; 2), (1; - 6) có bao nhiêu cặp số là nghiệm của phương trình 3x - 2y = 13.
Câu 19: Công thức nghiệm tổng quát của phương trình 0x + 4y = - 16
Câu 20: Tìm giá trị của m để đường thẳng (m - 1)x + (m + 1)y = 2m + 1 đi qua điểm A(2;-3).
Câu 21: Giải hệ phương trình \(\left\{ \begin{array}{l}y - \dfrac{x}{2} = 2\\\dfrac{3}{2}x + y = 42\end{array} \right.\)
Câu 22: Cho hệ phương trình \(\left\{ \begin{array}{l}3x - 2y = 10\\2x + 3y = - 2\end{array} \right.\). Khẳng định nào sau đây là đúng?
Câu 23: Cho hệ \(\left\{ \begin{array}{l}4x + 5y = 15\\6x - 4y = 11\end{array} \right.\) có nghiệm (m; n).Tính 2m - n
Câu 24: Gọi (a;b) là nghiệm của hệ phương trình \(\left\{ \begin{array}{l}2x - 3y = 61\\2x + y = - 7\end{array} \right.\). Tính a - b?
Câu 25: Một chiếc vòng nữ trang được làm từ vàng và đồng với thể tích là 8,4 cm3 và cân nặng 104,44 g. Vàng có khối lượng riêng là 19,3 g/cm3 còn đồng có khối lượng riêng là 9g/cm3. Hỏi thể tích của vàng và đồng được sử dụng ?
Câu 26: Bạn An tiêu thụ 12 ca-lo cho mỗi phút bơi và 8 ca-lo cho mỗi phút chạy bộ. Bạn An cần tiêu thụ tổng cộng 300 ca-lo trong 30 phút với hai hoạt động trên. Vậy bạn An cần bao nhiêu thời gian cho mỗi hoạt động ?
Câu 27: Vì có thành tích học tập tốt, mẹ thưởng cho hai anh em Bình và An lần lượt là 250000 đồng và 150000 đồng. Hai anh em cùng thi đua tiết kiệm, Bình để dành mỗi tuần 20000 đồng, còn An để dành 30000 đồng mỗi tuần. Hỏi sau bao lâu thì tổng số tiền của An có được bằng tổng số tiền của Bình?
Câu 28: An và Bình cùng một lúc lên hai chiếc taxi từ hai địa điểm A và B, đi ngược chiều nhau và gặp nhau sau 50 phút. Do đường đông nên vận tốc xe taxi của bạn An chậm hơn vận tốc taxi của bạn Bình là 10 km/h. Tìm vận tốc xe taxi của mỗi bạn. Biết quãng đường A đến B dài 75km và vận tốc các xe là không đổi trong suốt thời gian đi.
Câu 29: Nghiệm của phương trình \(\dfrac{{14}}{{{x^2} - 9}} = 1 - \dfrac{1}{{3 - x}}\) là:
Câu 30: Nghiệm của phương trình \(\dfrac{{x\left( {x - 7} \right)}}{3} - 1 = \dfrac{x}{2} = \dfrac{{x - 4}}{3}\) là:
- A. \(\left[ \begin{array}{l}x = \dfrac{{-15 + \sqrt {337} }}{4}\\x = \dfrac{{15 - \sqrt {337} }}{4}\end{array} \right.\)
- B. \(\left[ \begin{array}{l}x = \dfrac{{15 + \sqrt {337} }}{4}\\x = \dfrac{{15 - \sqrt {337} }}{4}\end{array} \right.\)
- C. \(\left[ \begin{array}{l}x = \dfrac{{15 + \sqrt {337} }}{4}\\x = \dfrac{{-15 - \sqrt {337} }}{4}\end{array} \right.\)
- D. \(\left[ \begin{array}{l}x = \dfrac{{-15 + \sqrt {337} }}{4}\\x = \dfrac{{-15 - \sqrt {337} }}{4}\end{array} \right.\)
Câu 31: Phương trình \({\left( {x - 1} \right)^3} + 0,5{x^2} = x\left( {{x^2} + 1,5} \right)\) có nghiệm là:
Câu 32: Phương trình \({x^3} + 2{x^2} - {\left( {x - 3} \right)^2} = \left( {x - 1} \right)\left( {{x^2} - 2} \right)\) có nghiệm là:
- A. \(\left[ \begin{array}{l}x = \dfrac{{ 4 + \sqrt {38} }}{2}\\x = \dfrac{{ - 4 - \sqrt {38} }}{2}\end{array} \right.\)
- B. \(\left[ \begin{array}{l}x = \dfrac{{ - 4 + \sqrt {38} }}{2}\\x = \dfrac{{ - 4 + \sqrt {38} }}{2}\end{array} \right.\)
- C. \(\left[ \begin{array}{l}x = \dfrac{{ - 4 + \sqrt {38} }}{2}\\x = \dfrac{{ - 4 - \sqrt {38} }}{2}\end{array} \right.\)
- D. \(\left[ \begin{array}{l}x = \dfrac{{ - 4 - \sqrt {38} }}{2}\\x = \dfrac{{ - 4 - \sqrt {38} }}{2}\end{array} \right.\)
Câu 33: Đường tròn ngoại tiếp đa giác là đường tròn
Câu 35: Cho hai đường tròn (O, R) và (O’, R’), với R > R’. Gọi d là khoảng cách từ O đến O’.Khoanh vào khẳng định đúng.
Câu 36: Cho hai đường tròn (O) và (O’) tiếp xúc ngoài tại A. Kẻ tiếp tuyến chung ngoài MN của hai đường tròn (M ∈ (O), N ∈ (O’)). Gọi P là điểm đối xứng với M qua OO’, Q là điểm đối xứng với N qua OO’. MNQP là hình:
Câu 37: Cho (O;R). Đường thẳng d là tiếp tuyến của đường tròn (O;R) tại tiếp điểm A khi
Câu 38: “Nếu một đường thẳng đi qua một điểm của đường tròn và … thì đường thẳng ấy là một tiếp tuyến của đường tròn”. Cụm từ thích hợp điền vào chỗ trống là
Câu 39: Cho góc (xOy) , trên Ox lấy P, trên Oy lấy Q sao cho chu vi ∆POQ bằng 2a không đổi. Chọn câu đúng.
Câu 40: Cho nửa đường tròn (O ; R), AB là đường kính. Dây BC có độ dài R. Trên tia đối của tia CB lấy điểm D sao cho CD = 3R. Chọn câu đúng.