Bài kiểm tra
Đề thi thử vào lớp 10 năm 2021 môn Toán Trường THCS Khánh An
1/50
120 : 00
Câu 1: Giá trị của \(\sqrt {\dfrac{{49}}{{0,09}}} \) bằng
Câu 3: Tính: \(\displaystyle \left( {{{\sqrt {14} - \sqrt 7 } \over {1 - \sqrt 2 }} + {{\sqrt {15} - \sqrt 5 } \over {1 - \sqrt 3 }}} \right):{1 \over {\sqrt 7 - \sqrt 5 }} \)
Câu 4: Rút gọn biểu thức \(\displaystyle Q = {a \over {\sqrt {{a^2} - {b^2}} }} - \left( {1 + {a \over {\sqrt {{a^2} - {b^2}} }}} \right):{b \over {a - \sqrt {{a^2} - {b^2}} }}\) với a > b > 0
Câu 5: Tìm x, biết : \(\root 3 \of {1 - x} < 2\)
Câu 6: Đẳng thức nào đúng nếu x là số âm:
Câu 7: Giá trị của \(\sqrt {0,16} \) là:
Câu 8: Đường thẳng \(y = \left( {1 + \sqrt 2 } \right)x - \sqrt 3 \) cắt trục hoành Ox tại điểm có hoành độ bằng:
Câu 9: Đường thẳng đi qua điểm \(A\left( {\dfrac{1}{2}\,;\,\dfrac{3}{5}} \right)\) và song song với đường thẳng y = 2x – 3 có phương trình là:
Câu 10: Xác định hàm số bậc nhất y = ax + b biết đồ thị của hàm số song song với đường thẳng \(y = \sqrt 3 x\) và đi qua điểm \(B\left( {1\,;\,\sqrt 3 + 5} \right)\)
Câu 11: Cho hàm số bậc nhất \(y = \left( {1 - \sqrt 5 } \right)x - 1\). Tính giá trị của x khi \(y = \sqrt 5 \)
Câu 12: Với những giá trị nào của k thì hàm số bậc nhất \(y = \left( {5 - k} \right)x + 1\) nghịch biến ?
Câu 13: Gọi (x;y) là nghiệm của hệ phương trình \(\left\{\begin{array}{l} (x+1)(y-1)=x y-1 \\ (x-3)(y-3)=x y-3 \end{array}\right.\) .Giá trị của x.y là
Câu 14: Một chuyển động đi từ A đến B với vận tốc 50m/ph rồi đi tiếp từ B đến C với vận tốc 45m/ph. Tổng cộng, vật đó đi được quãng đường dài 165 m. Tính thời gian đi trên mỗi đoạn đường AB và BC, biết rằng thời gian vật đi trên đoạn AB ít hơn thời gian vật đi trên đoanh đường BC là 30 giây.
Câu 15: Hai cặp số (-1 ; 1) và (-1 ; -2) là hai nghệm của một phương trình bậc nhất hai ẩn. Tập nghiệm của phương trình đó là:
- A. \(S = \left\{ {\left( {x\,\,;\,\,1} \right)\left| {x \in R} \right.} \right\}\)
- B. \(S = \left\{ {\left( { - 1\,\,;\,\,y} \right)\left| {y \in R} \right.} \right\}\)
- C. \(S = \left\{ {\left( {x\,\,;\,\, - 2} \right)\left| {x \in R} \right.} \right\}\)
- D. \(S = \left\{ {\left( { - 1\,\,;\,\,1} \right);\left( { - 1\,\,;\,\, - 2} \right)} \right\}\)
Câu 16: (x;y) là nghiệm của hệ phương trình \(\begin{equation} \left\{\begin{array}{l} 2 x+3 y=\frac{7}{2}-m \\ 4 x-y=5 m \end{array}\right. \end{equation}\) . Tìm m thỏa \(\begin{equation} x^{2}+y^{2}=\frac{25}{16} \end{equation}\)
- A. \(\begin{equation} \left[\begin{array}{l} m=1 \\ m=-1 \end{array}\right. \end{equation}\)
- B. \(\begin{equation} \left[\begin{array}{l} m=-1 \\ m=-\frac{1}{2} \end{array}\right. \end{equation}\)
- C. \(\begin{equation} \left[\begin{array}{l} m=2 \\ m=-3 \end{array}\right. \end{equation}\)
- D. \(\begin{equation} \left[\begin{array}{l} m=1 \\ m=-\frac{1}{4} \end{array}\right. \end{equation}\)
Câu 17: Một hệ phương trình bậc nhất hai ẩn:
Câu 18: Phương trình \({x^2} = 12x + 288\) có nghiệm là
Câu 19: Cho phương trình \(x^{4}-5 x^{2}+m=0(1)\). Tìm m để phương trình (1) có đúng 2 nghiệm phân biệt.
Câu 20: Cho phương trình (m + 1)x2 + 4x + 1 = 0. Tìm m để phương trình đã cho có nghiệm
Câu 21: Giải phương trình \({x^2} - \dfrac{{2x - 3{x^2}}}{{x - 1}} = \dfrac{{4x + 4}}{x} + 2x\)
Câu 22: Biết ca nô xuôi dòng sông 39 km, rồi ngược dòng 28 km hết một thời gian bằng thời gian nó đi 70 km trong nước hồ yên lặng. Tính vận tốc của ca nô trong nước yên lặng, biết rằng vận tốc nước chảy là 3 km/h.
Câu 23: Giải phương trình: \( - 0,4{x^2} + 1,2x = 0\)
Câu 24: Hàm số \(y = - \left( {1 - \sqrt 2 } \right){x^2}\)
Câu 25: Nghiệm của phương trình \({\left( {2x - \sqrt 2 } \right)^2} - 1 = \left( {x + 1} \right)\left( {x - 1} \right)\) là:
- A. \({x_1} = \dfrac{{ \sqrt 2 + \sqrt 2 }}{3} ;\) \({x_2} = \dfrac{{ \sqrt 2 - \sqrt 2 }}{3} \)
- B. \({x_1} = \dfrac{{ 2\sqrt 2 + \sqrt 2 }}{3} ;\) \({x_2} = \dfrac{{ \sqrt 2 - \sqrt 2 }}{3} \)
- C. \({x_1} = \dfrac{{ \sqrt 2 + \sqrt 2 }}{3} ;\) \({x_2} = \dfrac{{ 2\sqrt 2 - \sqrt 2 }}{3} \)
- D. \({x_1} = \dfrac{{ 2\sqrt 2 + \sqrt 2 }}{3} ;\) \({x_2} = \dfrac{{ 2\sqrt 2 - \sqrt 2 }}{3} \)
Câu 26: Cho phương trình ax2 + bx + c = 0 (a ≠ 0) có biệt thức Δ = b2 - 4ac. Phương trình đã cho vô nghiệm khi:
Câu 28: Miếng kim loại thứ nhất nặng 880g, miếng kim loại thứ hai nặng 858g. Thể tích của miếng thứ nhất nhỏ hơn thể tích của miếng thứ hai là 10 cm3, nhưng khối lượng riêng của miếng thứ nhất lớn hơn khối lượng riêng của miếng thứ hai là 1 g/cm3. Tìm khối lượng riêng của miếng kim loại thứ nhất.
Câu 29: Hệ số a, b, c của phương trình \(2{x^2} + {m^2} = 2(m - 1)x\) (m là một hằng số) là:
Câu 30: Cho hàm số \(y = a{x^2},\,\,a \ne 0\). Chọn câu trả lời sai.
Câu 31: Cho tam giác ABC vuông tại A cạnh AB = 5cm, đường cao AH = 3cm. Độ dài cạnh BC bằng
Câu 32: Cho tam giác ABC vuông tại A, kẻ đường cao AH . Biết AH = 12cm, BH = 9cm. Tính diện tích tam giác ABC
Câu 33: Cho tam giác ABC vuông tại A. Biết rằng AB : AC = \(\sqrt3\). Số đo độ của góc ABC bằng:
Câu 34: Tính chiều cao của đài kiểm soát không lưu Nội Bài. Biết bóng của đài kiểm soát được chiếu bởi ánh sáng mặt trời cuống đất dài 200m và góc tạo bởi tia sáng với mặt đất là 25o24'(kết quả làm tròn đến hàng đơn vị)
Câu 35: Cho tam giác ABC vuông tại A có AC = 5cm, ∠B = α biết cotB = 2, 4. Tính AB, BC
Câu 36: Cho tam giác ABC vuông tại A có AB = 6cm, ∠B = α, biết tanα = \(\frac{5}{{12}}\). Hãy tính BC, AC.
Câu 37: Nếu thể tích của một hình cầu là \(113\dfrac{1}{7}\,c{m^3}\) thì trong các kết quả sau đây, kết quả nào là bán kính của nó (lấy \(\pi = \dfrac{{22}}{7})?\)
Câu 38: Nếu một mặt cầu có diện tích là \(1017,36 cm\)2 thì thể tích hình cầu đó là:
Câu 39: Thể tích của một hình trụ bằng \(972\pi \,c{m^3}.\) Nếu bán kính đáy hình trụ là \(9cm\) thì chiều cao của hình trụ là:
Câu 40: Đường ống nối hai bể cá trong một thủy cung ở miền nam nước Pháp có dạng một hình trụ với độ dài \(30 m\). Dung tích của đường ống nói trên là \(1800000\) lít. Tính diện tích đáy của đường ống.
Câu 41: “Cho hai tiếp tuyến của một đường tròn cắt nhau tại một điểm. Tia nối từ điểm đó tới tâm là tia phân giác của góc tạo bởi… Tia nối từ tâm tới điểm đó là tia phân giác của góc tạo bởi…” Hai cụm từ thích hợp vào chỗ trống lần lượt là
Câu 43: Cho tam giác đều (ABC ) có cạnh bằng 1, nội tiếp trong đường tròn tâm (O. ) Đường cao AD của tam giác (ABC ) cắt đường tròn tại điểm H. Diện tích phần giới hạn bởi cung nhỏ BC và hình BOCH là:
Câu 45: Chọn khẳng định đúng trong các khẳng định sau. Trong hai dây của một đường tròn
Câu 46: Trong hình vẽ dưới đây, biết (CF ) là tiếp tuyến của đường tròn (O).Hãy chỉ ra góc tạo bởi tiếp tuyến và dây cung?
Câu 47: Trong hai cung của một đường tròn hay hai đường tròn bằng nhau, cung nào nhỏ hơn
Câu 48: Góc nội tiếp nhỏ hơn hoặc bằng 90° có số đo
Câu 49: Cho nửa đường tròn đường kính AB, dây MN có độ dài bằng bán kính R của đường tròn, M thuộc cung AN. Các tia AM và BN cắt nhau ở I, dây AN và BM cắt nhau ở K. Với vị trí nào của dây MN thì diện tích tam giác IAB lớn nhất? Tính diện tích đó theo bán kính R.
Câu 50: Cho nửa đường tròn (O ; 10 cm) đường kính AB. Vẽ hai nửa đường tròn đường kính CA, CB ở trong nửa đường tròn (O), biết CA = 6 cm, CB = 4 cm và \(\pi = 3,14\). Hãy tính diện tích phần tô đen.