Bài kiểm tra
Đề thi thử vào lớp 10 năm 2021 môn Toán Trường THCS Bạch Đằng
1/40
90 : 00
Câu 1: Rút gọn \( {P = \sqrt {6 + \sqrt 8 + \sqrt {12} + \sqrt {24} } }\)
Câu 2: Tìm giá trị nhỏ nhất của biểu thức \( B = \sqrt {4{a^2} - 4a + 1} + \sqrt {4{a^2} - 12a + 9} \)
Câu 3: Tìm giá trị nhỏ nhất của biểu thức \( A = \sqrt {{m^2} + 2m + 1} + \sqrt {{m^2} - 8m + 16} \)
Câu 4: Cho \( P = \frac{2}{{\sqrt x + 1}}\) . Có bao nhiêu giá trị x thuộc Z để P thuộc Z ?
Câu 5: Cho \( A = \frac{{2\sqrt x - 1}}{{\sqrt x + 2}}\) với ( \(x \ge 0.\) ) Có bao nhiêu giá trị của (x ) để (A ) có giá trị nguyên.
Câu 6: Rút gọn biểu thức: \({T = \frac{{\left( {\sqrt {2a} - 2\sqrt 2 } \right)\left( {a - 1} \right)}}{{a - \sqrt a - 2}}{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \left( {a > 0;a \ne 4} \right)}\)
Câu 7: Cho hàm số y = (a − 2) x + 5 có đồ thị là đường thẳng d. Tìm a để đường thẳng d đi qua điểm M(2;3)
Câu 8: Cho hàm số y = (a − 2) x + 5 có đồ thị là đường thẳng d. Với giá trị nào của a thì hàm số trên đồng biến trên R.
Câu 9: Tìm điểm mà hàm số y = (m − 2) x + 3m luôn đi qua trong mặt phẳng tọa độ Oxy?
Câu 10: Cho các điểm sau, điểm nào không thuộc đồ thị của hàm số y = −3x + 1?
Câu 11: Xác định hàm số bậc nhất y = ax + b biết đồ thị của hàm số song song với đường thẳng \(y = \sqrt 3 x\) và đi qua điểm \(B\left( {1\,;\,\sqrt 3 + 5} \right)\)
Câu 12: Xác định hàm số bậc nhất y = ax + b biết a = 3 và đồ thị của hàm số đi qua điểm A(2 ; 2).
Câu 13: Xác định hàm số bậc nhất y = ax + b biết a = 2 và đồ thị của hàm số cắt trục hoành tại điểm có hoành độ bằng 1,5.
Câu 14: Hai cặp số (-1 ; 1) và (-1 ; -2) là hai nghệm của một phương trình bậc nhất hai ẩn. Tập nghiệm của phương trình đó là:
- A. \(S = \left\{ {\left( {x\,\,;\,\,1} \right)\left| {x \in R} \right.} \right\}\)
- B. \(S = \left\{ {\left( { - 1\,\,;\,\,y} \right)\left| {y \in R} \right.} \right\}\)
- C. \(S = \left\{ {\left( {x\,\,;\,\, - 2} \right)\left| {x \in R} \right.} \right\}\)
- D. \(S = \left\{ {\left( { - 1\,\,;\,\,1} \right);\left( { - 1\,\,;\,\, - 2} \right)} \right\}\)
Câu 15: Phương trình bậc nhất hai ẩn 2x + 0y = 6 có tập nghiệm là:
Câu 16: Cặp số nào là nghiệm của phương trình 3x + 5y = -3 ?
Câu 17: Nghiệm của hệ phương trình \(\left\{ \begin{array}{l}\dfrac{1}{x} - \dfrac{1}{y} = 1\\\dfrac{5}{x} + \dfrac{4}{y} = 5\end{array} \right.\) là:
Câu 18: Xác đinh a và b để đồ thị hàm số \(y = ax + b\) đi qua hai điểm \(A\left( {\sqrt 3 \,;\,2} \right)\) và B(0 ; 2)
Câu 19: Xác đinh a và b để đồ thị hàm số \(y = ax + b\) đi qua hai điểm A(3 ; -1) và B(-3 ; 2).
Câu 20: Ta biết rằng: Một đa thức bằng đa thức 0 khi và chỉ khi tất cả các số của nó bằng 0. Hãy tìm các giá trị của m và n để đa thức sau đây (với số x) bằng đa thức 0: \(P(x) = (3m - 5n + 1)x + (4m - n - 10)\)
Câu 21: Cho phương trình bậc hai \(a{x^2} + bx + c = 0\) . Câu nào dưới đây là đúng ?
- A. Nếu \(\Delta = 0\) thì phương trình có nghiệm là \({x_1} = \dfrac{{ - b + \sqrt \Delta }}{{2a}},\,\,{x_2} = \dfrac{{ - b - \sqrt \Delta }}{{2a}}\)
- B. Nếu \(\Delta < 0\) thì phương trình có nghiệm là \({x_1} = \dfrac{{ - b + \sqrt \Delta }}{{2a}},\,\,{x_2} = \dfrac{{ - b - \sqrt \Delta }}{{2a}}\)
- C. Nếu \(\Delta > 0\) thì phương trình có nghiệm là \({x_1} = \dfrac{{b + \sqrt \Delta }}{{2a}},\,\,{x_2} = \dfrac{{b - \sqrt \Delta }}{{2a}}\)
- D. Nếu \(\Delta ' > 0\) thì phương trình có nghiệm là \({x_1} = \dfrac{{ - b + \sqrt \Delta }}{a},\,\,{x_2} = \dfrac{{ - b - \sqrt \Delta }}{a}\)
Câu 22: Cho phương trình \({x^2} - 2\left( {m - 1} \right)x + {m^2} = 0\). Với giá trị nào của m thì phương trình có nghiệm kép?
Câu 23: Cho phương trình \({x^2} - 2\left( {m - 1} \right)x + {m^2} = 0\). Với giá trị nào của m thì phương trình có hai nghiệm phân biệt.
Câu 24: Biết ca nô xuôi dòng sông 39 km, rồi ngược dòng 28 km hết một thời gian bằng thời gian nó đi 70 km trong nước hồ yên lặng. Tính vận tốc của ca nô trong nước yên lặng, biết rằng vận tốc nước chảy là 3 km/h.
Câu 25: Một công nhân phải làm 50 sản phẩm trong một thời gian cố định. Do cải tiến phương pháp sản xuất nên mỗi giờ làm thêm được 5 sản phẩm. Vì thế đã hoàn thành kế hoạch sớm hơn quy định là 1 giờ 40 phút. Biết theo quy định mỗi giờ người ấy phải làm bao nhiêu sản phẩm ?
Câu 26: Bài toán yêu cầu tìm tích của một số dương với một số lớn hơn nó 2 đơn vị, nhưng bạn Quân nhầm đầu bài lại tìm tích của một số dương với một số bé hơn nó 2 đơn vị. Kết quả của bạn Quân là 120. Hỏi nếu làm đúng đầu bài đã cho thì kết quả phải là bao nhiêu ?
Câu 27: Cho tam giác ABC vuông tại A. Biết rằng AB : AC = \(\sqrt3\). Số đo độ của góc ABC bằng:
Câu 28: Cho tam giác ABC vuông tại A, BC = a, AC = b, AB = c. Khẳng định nào dưới đây đúng?
Câu 29: Cho ΔABC vuông tại A, ∠B = α, ∠C = β. Hệ thức nào sau đây luôn đúng?
Câu 31: Tam giác ABC nội tiếp đường tròn (O;R) biết góc góc C = 450 và AB = a. Bán kính đường tròn (O) là
Câu 32: Cho tam giác ABC nội tiếp đường tròn (O;R), đường cao AH, biết AB = 12cm,AC = 15cm, AH = 6cm.Tính đường kính của đường tròn (O).
Câu 33: Cho (O), đường kính AB, điểm D thuộc đường tròn sao cho góc DAB = 500. Gọi E là điểm đối xứng với A qua D. Góc AEB bằng bao nhiêu độ?
Câu 34: Cho ngũ giác đều ABCDE. Gọi K là giao điểm của AC và BE. Khi đó hệ thức nào dưới đây là đúng?
Câu 35: Cho (O;4) có dây AC bằng cạnh hình vuông nội tiếp và dây BC bằng cạnh tam giác đều nội tiếp đường tròn đó điểm C và A nằm cùng phía với BO. Tính số đo góc ACB
Câu 36: Tính độ dài cạnh của tam giác đều nội tiếp (O;R) theo R.
Câu 37: Nếu thể tích của một hình cầu là \(113\dfrac{1}{7}\,c{m^3}\) thì trong các kết quả sau đây, kết quả nào là bán kính của nó (lấy \(\pi = \dfrac{{22}}{7})?\)
Câu 38: Nếu một mặt cầu có diện tích là \(1017,36 cm^2\) thì thể tích hình cầu đó là:
Câu 39: Khi quay nửa đường tròn, bán kính R = 12,5 cm một vòng quanh đường kính AB cố định, ta được một mặt cầu. Diện tích mặt cầu đó là:
Câu 40: Cho hình cầu có đường kính d = 8 cm. Diện tích mặt cầu là: