Bài kiểm tra
Đề thi thử vào lớp 10 năm 2021 môn Toán Trường THCS Bắc Lý
1/50
120 : 00
Câu 1: Đẳng thức nào đúng nếu x là số âm:
Câu 2: Rút gọn biểu thức \(x - 4 + \sqrt {16 - 8x + {x^2}} \) với \(x > 4\).
Câu 5: Tìm x biết \(\sqrt {4 - 5x} = 12\).
Câu 7: Tính: \(\displaystyle \left( {{{\sqrt {14} - \sqrt 7 } \over {1 - \sqrt 2 }} + {{\sqrt {15} - \sqrt 5 } \over {1 - \sqrt 3 }}} \right):{1 \over {\sqrt 7 - \sqrt 5 }} \)
Câu 8: Tính: \(\displaystyle \left( {{{2\sqrt 3 - \sqrt 6 } \over {\sqrt 8 - 2}} - {{\sqrt {216} } \over 3}} \right).{1 \over {\sqrt 6 }} \)
Câu 9: Tìm x biết \(\displaystyle {5 \over 3}\sqrt {15{\rm{x}}} - \sqrt {15{\rm{x}}} - 2 = {1 \over 3}\sqrt {15{\rm{x}}} \)
Câu 10: Rút gọn biểu thức \(\displaystyle Q = {a \over {\sqrt {{a^2} - {b^2}} }} - \left( {1 + {a \over {\sqrt {{a^2} - {b^2}} }}} \right):{b \over {a - \sqrt {{a^2} - {b^2}} }}\) với a > b > 0
Câu 11: Rút gọn biểu thức: \(\displaystyle \left( {1 + {{a + \sqrt a } \over {\sqrt a + 1}}} \right)\left( {1 - {{a - \sqrt a } \over {\sqrt a - 1}}} \right) \) với a ≥ 0 và a ≠ 1
Câu 12: Rút gọn biểu thức \(\displaystyle {{a\sqrt b + b\sqrt a } \over {\sqrt {ab} }}:{1 \over {\sqrt a - \sqrt b }} \) với a, b dương và a ≠ b
Câu 13: Xác định hàm số bậc nhất y = ax + b biết đồ thị của hàm số song song với đường thẳng \(y = \sqrt 3 x\) và đi qua điểm \(B\left( {1\,;\,\sqrt 3 + 5} \right)\)
Câu 14: Xác định hàm số bậc nhất y = ax + b biết a = 3 và đồ thị của hàm số đi qua điểm A(2 ; 2).
Câu 15: Xác định hàm số bậc nhất y = ax + b biết a = 2 và đồ thị của hàm số cắt trục hoành tại điểm có hoành độ bằng 1,5.
Câu 16: Cho hàm số bậc nhất \(y = \left( {1 - \sqrt 5 } \right)x - 1\). Tính giá trị của x khi \(y = \sqrt 5 \)
Câu 17: Cho hàm số bậc nhất \(y = \left( {1 - \sqrt 5 } \right)x - 1\). Tính giá trị của y khi \(x = 1 + \sqrt 5 \)
Câu 18: Với những giá trị nào của m thì hàm số \(y = \dfrac{{m + 1}}{{m - 1}}x + 3,5\) là hàm số bậc nhất ?
Câu 19: Nghiệm của hệ phương trình \(\left\{ \begin{array}{l}x - 2y = 6\\\dfrac{1}{{\sqrt 2 }}x - y\sqrt 2 = 3\sqrt 2 \end{array} \right.\) là
Câu 20: Hệ phương trình \(\left\{ \begin{array}{l}x\sqrt 5 - \left( {1 + \sqrt 3 } \right)y = 1\\\left( {1 - \sqrt 3 } \right)x + y\sqrt 5 = 1\end{array} \right.\) có nghiệm là:
- A. \(\left( {x;y} \right) = \left( {\dfrac{{\sqrt 5 + \sqrt 3 + 1}}{3};\dfrac{{\sqrt 5 + \sqrt 3 + 1}}{3}} \right)\)
- B. \(\left( {x;y} \right) = \left( {\dfrac{{\sqrt 5 + \sqrt 3 - 1}}{3};\dfrac{{\sqrt 5 + \sqrt 3 - 1}}{3}} \right)\)
- C. \(\left( {x;y} \right) = \left( {\dfrac{{\sqrt 5 - \sqrt 3 + 1}}{3};\dfrac{{\sqrt 5 + \sqrt 3 - 1}}{3}} \right)\)
- D. \(\left( {x;y} \right) = \left( {\dfrac{{\sqrt 5 + \sqrt 3 + 1}}{3};\dfrac{{\sqrt 5 + \sqrt 3 - 1}}{3}} \right)\)
Câu 21: Xác đinh a và b để đồ thị hàm số \(y = ax + b\) đi qua hai điểm \(A\left( {\sqrt 3 \,;\,2} \right)\) và B(0 ; 2)
Câu 22: Hai cặp số (-1 ; 1) và (-1 ; -2) là hai nghiệm của một phương trình bậc nhất hai ẩn. Tập nghiệm của phương trình đó là:
- A. \(S = \left\{ {\left( {x\,\,;\,\,1} \right)\left| {x \in R} \right.} \right\}\)
- B. \(S = \left\{ {\left( { - 1\,\,;\,\,y} \right)\left| {y \in R} \right.} \right\}\)
- C. \(S = \left\{ {\left( {x\,\,;\,\, - 2} \right)\left| {x \in R} \right.} \right\}\)
- D. \(S = \left\{ {\left( { - 1\,\,;\,\,1} \right);\left( { - 1\,\,;\,\, - 2} \right)} \right\}\)
Câu 23: Phương trình bậc nhất hai ẩn là hệ thức dạng ax + by = c, trong đó a, b và c là:
Câu 24: Cho đường thẳng d có phương trình (m - 2)x + (3m - 1)y = 6m - 2 Tìm các giá trị của tham số m để d song song với trục hoành.
Câu 25: Nghiệm của phương trình \(9 x^{4}+6 x^{2}+1=0\) là?
Câu 26: Nghiệm của phương trình \(x^{2}-2 \sqrt{3} x-6=0\) là?
Câu 27: Cho phương trình \({x^2} - 2\left( {m - 1} \right)x + {m^2} = 0\). Với giá trị nào của m thì phương trình có nghiệm kép?
Câu 28: Giải phương trình \(\dfrac{{3{x^2} - 15x}}{{{x^2} - 9}} = x - \dfrac{x}{{x - 3}}\)
- A. \(S = \left\{ {1;\dfrac{{3 + \sqrt {69} }}{2};\dfrac{{-3 - \sqrt {69} }}{2}} \right\}\)
- B. \(S = \left\{ {1;\dfrac{{-3 + \sqrt {69} }}{2};\dfrac{{3 - \sqrt {69} }}{2}} \right\}\)
- C. \(S = \left\{ {-1;\dfrac{{3 + \sqrt {69} }}{2};\dfrac{{3 - \sqrt {69} }}{2}} \right\}\)
- D. \(S = \left\{ {1;\dfrac{{3 + \sqrt {69} }}{2};\dfrac{{3 - \sqrt {69} }}{2}} \right\}\)
Câu 29: Phương trình \(2{\left( {{x^2} - 2x} \right)^2} + 3\left( {{x^2} - 2x} \right) + 1 = 0\) có bao nhiêu nghiệm?
Câu 30: Phương trình \(5{x^3} - {x^2} - 5x + 1 = 0\) có nghiệm là:
Câu 31: Cho một tam giác vuông có hai cạnh góc vuông hơn kém nhau 2 cm. Nếu tăng cạnh góc vuông lớn lên 4 cm và giảm cạnh góc vuông nhỏ 2 cm thì ta được một tam giác vuông khác có cùng diện tích. Hỏi diện tích của tam giác vuông ?
Câu 32: Tìm hai số tự nhiên biết rằng hai số có tổng là 78 và ước chung lớn nhất là 6.
Câu 33: Bác Bình dự định đi xe đạp trên quãng đường AB với tốc độ 10 km/h. Sau khi đi được nửa quãng đường với tốc độ dự định, bác dừng lại nghỉ 30 phút. Để đến điểm B kịp giờ dự định, bác đã đạp xe với tốc độ 15 km/h trên quãng đường còn lại. Hãy tính quãng đường AB.
Câu 34: Cho tam giác ABC vuông tại A. Biết rằng AB : AC = \(\sqrt3\). Số đo độ của góc ABC bằng:
Câu 35: Cho tam giác ABC vuông tại A có AC = 3, AB = 4. Khi đó cos B bằng
Câu 37: Hai tiếp tuyến tại B và C của đường tròn (O) cắt nhau tại A.Biết OB = 3cm; OA = 5cm. Chọn khẳng định sai
Câu 39: Cho tam giác ABC cân tại A nội tiếp đường tròn ( O ). Gọi D là trung điểm cạnh AC, tiếp tuyến của đường tròn ( O ) tại A cắt tia BD tại E. Chọn khẳng định đúng
Câu 40: Đường thẳng a cách tâm (O ) của đường tròn (O;R) một khoảng bằng \(\sqrt8 cm\) Biết R = 3cm, số giao điểm của đường thẳng a và đường tròn (O;R) là:
Câu 41: Cho hai đường thẳng a và b song song với nhau, cách nhau một khoảng là 6cm ). Một đường tròn (O) tiếp xúc với a và b. Hỏi tâm (O ) di động trên đường nào?
Câu 42: Cho đường tròn (O;R) và dây AB = 1,2R. Vẽ một tiếp tuyến song song với AB, cắt các tia OA,OB lần lượt tại E và F. Tính diện tích tam giác OEF theo R.
Câu 43: Cho tứ giác ABCD nội tiếp đường tròn (O). Chọn khẳng định sai
Câu 44: Cho tứ giác ABCD nội tiếp. Chọn câu sai:
Câu 46: Đường tròn nội tiếp hình vuông cạnh a có bán kính là
Câu 47: Diện tích toàn phần của một hình trụ có chu vi đường tròn đáy là 12 cm và chiều cao là 4 cm là:
Câu 48: Một hình trụ có bán kính đáy bằng 5 cm và diện tích xung quanh bằng \(300\pi (c{m^2})\) . Chiều cao của hình trụ là:
Câu 49: Nếu thể tích của một hình cầu là \(113\dfrac{1}{7}\,c{m^3}\) thì trong các kết quả sau đây, kết quả nào là bán kính của nó (lấy \(\pi = \dfrac{{22}}{7})?\)
Câu 50: Nếu một mặt cầu có diện tích là \(1017,36 cm^2\) thì thể tích hình cầu đó là: