Đề thi thử THPT QG năm 2021 môn Toán - Trường THPT Yên Dũng số 2 lần 3

Câu hỏi Trắc nghiệm (50 câu):

  • Câu 1:

    Mã câu hỏi: 106167

    Xét các số thực dương ab thỏa mãn log5(5a.25b)=5log5a+log5b+1. Mệnh đề nào dưới đây đúng?

    • A.a+2b=ab.
    • B.a+2b=5ab.
    • C.2ab1=a+b.
    • D.a+2b=2ab.
  • Câu 2:

    Mã câu hỏi: 106168

    Cho hình nón có góc ở đỉnh bằng 600, bán kính đáy bằng a. Diện tích xung quanh của hình nón bằng

    • A.4πa2. 
    • B.πa23. 
    • C.2πa2.
    • D.πa2.
  • Câu 3:

    Mã câu hỏi: 106169

    Cho hàm số y=ax+bcx+d có đồ thị như hình vẽ

    Khẳng định nào sau đây đúng?

    • A.ab<0;ad>0.
    • B.ad>0;bd>0.
    • C.bd<0;bc>0.
    • D.ab<0;ac<0.
  • Câu 4:

    Mã câu hỏi: 106170

    Khối chóp tứ giác S.ABCD có đáy ABCD là hình vuông cạnh 6a, tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy có thể tích bằng

    • A.363a3.
    • B.36a3.
    • C.362a3.
    • D.1083a3.
  • Câu 5:

    Mã câu hỏi: 106171

    Thiết diện qua trục của một hình nón là tam giác đều cạnh 2a. Đường cao của hình nón là

    • A.h=a32.
    • B.h=a3.
    • C.h=2a.
    • D.h=a.
  • Câu 6:

    Mã câu hỏi: 106172

    Cho hình nón có đường kính đáy bằng 4. Biết rằng khi cắt hình nón đã cho bởi mặt phẳng qua trục, thiết diện thu được là một tam giác đều. Diện tích toàn phần của hình nón đã cho bằng

    • A.4(3+1)π.
    • B.12π.
    • C.20π3.
    • D.32π.
  • Câu 7:

    Mã câu hỏi: 106173

    Số giao điểm của đồ thị y=x32x2+3x2 và trục hoành là

    • A.1
    • B.3
    • C.0
    • D.2
  • Câu 8:

    Mã câu hỏi: 106174

    Cho khối chóp có thể tích V=36(cm3) và diện tích mặt đáy B=6(cm2). Chiều cao của khối chóp là 

    • A.h=12(cm).
    • B.h=6(cm).
    • C.h=72(cm).
    • D.h=18(cm).
  • Câu 9:

    Mã câu hỏi: 106175

    Đồ thị hàm số y=3x2+22x+1x có tất cả bao nhiêu tiệm cận?

    • A.4
    • B.2
    • C.1
    • D.3
  • Câu 10:

    Mã câu hỏi: 106176

    Trong các hình sau đây, có bao nhiêu hình được gọi là hình đa diện ?

    • A.2
    • B.4
    • C.3
    • D.5
  • Câu 11:

    Mã câu hỏi: 106177

    Cho hàm số y=f(x) có bảng biến thiên như sau:

    Hàm số đã cho đồng biến trên khoảng nào dưới đây?

    • A.(2;+).
    • B.(0;2).
    • C.(3;+).
    • D.(;1).
  • Câu 12:

    Mã câu hỏi: 106178

    Trong khai triển (a+b)n, số hạng tổng quát của khai triển là.

    • A.Cnk+1ank+1bk+1.
    • B.Cnkankbk.
    • C.Cnk1an+1bnk+1.
    • D.Cnkankbnk.
  • Câu 13:

    Mã câu hỏi: 106179

    Tìm số hạng đều tiên của cấp số nhân (un) với công bội q=2,u8=384. 

    • A.u1=6.
    • B.u1=12.
    • C.u1=13.
    • D.u1=3.
  • Câu 14:

    Mã câu hỏi: 106180

    Cho hàm số f(x) có đạo hàm trên R là hàm số f(x). Biết đồ thị hàm số f(x) được cho như hình vẽ. Hàm số f(x) nghịch biến trên khoảng

     

    • A.(0;1).
    • B.(;3).
    • C.(;1).
    • D.(3;2).
  • Câu 15:

    Mã câu hỏi: 106181

    Cho hàm số y=f(x) có bảng biến thiên như hình vẽ. Hỏi hàm số đã cho có bao nhiêu đường tiệm cận?

    • A.3
    • B.2
    • C.4
    • D.1
  • Câu 16:

    Mã câu hỏi: 106182

    Trong khai triển (1x)11, hệ số của số hạng chứa x3 là 

    • A.C118.
    • B.C113.
    • C.C115.
    • D.C113.
  • Câu 17:

    Mã câu hỏi: 106183

    Bảng biến thiên dưới đây là của hàm số nào?

    • A.y=x+32+x.
    • B.y=2x+1x2.
    • C.y=x+1x2.
    • D.y=x12x+2.
  • Câu 18:

    Mã câu hỏi: 106184

    Cho cấp số cộng (un) với un=4n3. Tìm công sai d của cấp số cộng.

    • A.d=4.
    • B.d=4.
    • C.d=1.
    • D.d=1.
  • Câu 19:

    Mã câu hỏi: 106185

    Cho hàm số y=f(x)=ax3+bx2+cx+d có đồ thị như hình vẽ. Tìm tập hợp tất cả các giá trị thực của tham số m để phương trình f(sin2x)=m có nghiệm

    • A.[1;1].
    • B.(1;3).
    • C.(1;1).
    • D.[1;3].
  • Câu 20:

    Mã câu hỏi: 106186

    Cho ngẫu nhiên 4 đỉnh của một đa giác đều 24 đỉnh. Tìm xác suất để chọn được 4 đỉnh là 4 đỉnh của một hình vuông? 

    • A.11771. 
    • B.21551.
    • C.1151.
    • D.269. 
  • Câu 21:

    Mã câu hỏi: 106187

    Cho tứ diện O.ABCOA,OB,OC đôi một vuông góc và OA=3a,OB=OC=2a. Thể tích V khối tứ diện đó là 

    • A.V=6a3.
    • B.V=a3.
    • C.V=2a3.
    • D.V=3a3.
  • Câu 22:

    Mã câu hỏi: 106188

    Tổng diện tích tất cả các mặt của hình bát diện đều cạnh a bằng 

    • A.43a2.
    • B.23a2.
    • C.63a2.
    • D.83a2.
  • Câu 23:

    Mã câu hỏi: 106189

    Cho lăng trụ đứng ABC.ABC có đáy ABC là tam giác với AB=a,AC=2aBAC^=1200,AA=2a5. Thể tích V của khối lăng trụ đã cho là 

    • A.V=4a353.
    • B.V=4a35.
    • C.V=a315.
    • D.V=a3153.
  • Câu 24:

    Mã câu hỏi: 106190

    Tập xác định của hàm số y=x3 là 

    • A.[0;+). 
    • B.(;+). 
    • C.(;0). 
    • D.(0;+).  
  • Câu 25:

    Mã câu hỏi: 106191

    Đặt a=log34, khi đó log1681 bằng

    • A.2a3.
    • B.32a.
    • C.2a.
    • D.a2.
  • Câu 26:

    Mã câu hỏi: 106192

    Một lớp có 30 học sinh, trong đó có 3 cán sự lớp. Hỏi có bao nhiêu cách cứ 4 bạn đi dự đại hội đoàn trường sao cho trong 4 học sinh đó có ít nhất một cán sự lớp 

    • A.9855.
    • B.27405.
    • C.8775
    • D.657720
  • Câu 27:

    Mã câu hỏi: 106193

    Cho hàm số f(x) có bảng biến thiên như sau. Mệnh đề nào dưới đây là đúng

    • A.Hàm số có hai điểm cực trị. 
    • B.Hàm số có một điểm cực trị.
    • C.Hàm số đạt cực trị tại x=1. 
    • D.Hàm số đạt cực tiểu tại x=2. 
  • Câu 28:

    Mã câu hỏi: 106194

    Cho hàm số có bảng biến thiên như hình dưới đây. Khẳng định nào sau đây là đúng?

    • A.Giá trị lớn nhất của hàm số trên tập số thực bằng 0
    • B.Giá trị cực đại của hàm số bằng 0.
    • C.Giá trị cực tiểu của hàm số bằng 0.
    • D.Giá trị nhỏ nhất của hàm số trên tập số thực bằng 16.
  • Câu 29:

    Mã câu hỏi: 106195

    Số điểm cực trị của hàm số y=2x36x+3 là 

    • A.3
    • B.2
    • C.4
    • D.1
  • Câu 30:

    Mã câu hỏi: 106196

    Cho hàm số y=f(x) xác định, liên tục trên R và có bảng biến thiên như hình vẽ dưới đây

    Số nghiệm thực của phương trình 3f(x)+2=0

    • A.3
    • B.2
    • C.4
    • D.1
  • Câu 31:

    Mã câu hỏi: 106197

    Cho hàm số y=5x+9x1 khẳng định nào sau đây là đúng?

    • A.Hàm số đồng biến trên (;1)(1;+).
    • B.Hàm số nghịch biến trên (;1)(1;+).
    • C.Hàm số nghịch biến trên (;1)(1;+).
    • D.Hàm số nghịch biến trên R{1}.
  • Câu 32:

    Mã câu hỏi: 106198

    Tính giá trị nhỏ nhất của hàm số y=x+4x2 trên khoảng (0;+).

    • A.min(0;+)y=5.
    • B.min(0;+)y=4.
    • C.min(0;+)y=3.
    • D.min(0;+)y=8.
  • Câu 33:

    Mã câu hỏi: 106199

    Rút gọn biểu thức P=x13.x6 với x>0 ta được 

    • A.P=x29.
    • B.P=x2.
    • C.P=x.
    • D.P=x18.
  • Câu 34:

    Mã câu hỏi: 106200

    Đường cong trong hình bên là đồ thị của hàm số nào?

    • A.y=x33x2+2.
    • B.y=x3+3x2+2.
    • C.y=x33x2+2.
    • D.y=x3+3x2+2.
  • Câu 35:

    Mã câu hỏi: 106201

    Cho hàm số y=f(x) có đạo hàm f(x)=x(x2)2(3x2),xR. Số điểm cực trị của hàm số y=f(x) bằng 

    • A.4
    • B.3
    • C.1
    • D.2
  • Câu 36:

    Mã câu hỏi: 106202

    Có bao nhiêu giá trị nguyên của tham số m để đồ thị hàm số y=x38x2+(m2+5)x2m2+14 có hai điểm cực trị nằm về hai phía trục Ox?

    • A.6
    • B.4
    • C.5
    • D.7
  • Câu 37:

    Mã câu hỏi: 106203

    Một đề thi trắc nghiệm gồm 50 câu, mỗi câu có 4 phương án trả lời trong đó chỉ có 1 phương án đúng, mỗi câu trả lời đúng được 0,2 điểm. Một thí sinh làm bài bằng cách chọn ngẫu nhiên 1 trong 4 phương án ở mỗi câu. Tính xác suất để thí sinh đó được 6 điểm

    • A.0,2520.0,7530. 
    • B.0,2530.0,7520. 
    • C.0,2530.0,7520.C5030. 
    • D.10,2520.0,7530.
  • Câu 38:

    Mã câu hỏi: 106204

    Cho hình lăng trụ ABC.ABC có đáy là tam giác vuông cân tại A. Hình chiếu vuông góc của điểm A lên mặt phẳng (ABC) trùng với trọng tâm tam giác (ABC). Biết khoảng cách giữa hai đường thẳng AABC bằng 176a, cạnh bên AA bằng 2a. Tính theo a thể tích V của khối lăng trụ ABC.ABC biết AB<a3. 

    • A.346a3. 
    • B.10218a3. 
    • C.1026a3.
    • D.3418a3. 
  • Câu 39:

    Mã câu hỏi: 106205

    Cho hình chóp S.ABCD có đáy là hình vuông và có mặt phẳng (SAB) vuông góc với mặt phẳng đáy, tam giác SAB là tam giác đều. Gọi I và E lần lượt là trung điểm của cạnh AB và BC; H là hình chiếu vuông góc của I lên cạnh SC. Khẳng định nào sau đây sai?

    • A.Mặt phẳng (SIC) vuông góc với mặt phẳng (SDE).
    • B.Mặt phẳng (SAI) vuông góc với mặt phẳng (SBC).
    • C.Góc giữa hai mặt phẳng (SAB) và (SIC) là góc BIC.  
    • D.Góc giữa hai mặt phẳng (SIC) và (SBC) là góc giữa hai đường thẳng IH và BH.
  • Câu 40:

    Mã câu hỏi: 106206

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB=3,BC=4,SA=2. Tam giác SAC nằm trong mặt phẳng vuông góc với đáy và có diện tích bằng 4. Côsin của góc giữa hai mặt phẳng (SAB) và (SAC) bằng

    • A.31717.
    • B.53417.
    • C.23417.
    • D.33434.
  • Câu 41:

    Mã câu hỏi: 106207

    Cho hình lăng trụ đứng ABC.ABC có đáy là tam giác vuông và AB=BC=a,AA=a2,M là trung điểm BC. Tính khoảng cách d của hai đường thẳng AMBC. 

    • A.d=a33. 
    • B.d=a77. 
    • C.d=a22. 
    • D.d=a66. 
  • Câu 42:

    Mã câu hỏi: 106208

    Cho hai số thực x,y thay đổi thỏa mãn điều kiện x2+y2=2. Gọi M,m lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số P=2(x3+y3)3xy. Giá trị của M+m bằng

    • A.4. 
    • B.12. 
    • C.6.
    • D.142. 
  • Câu 43:

    Mã câu hỏi: 106209

    Cho hình tứ diện ABCDAB,AC,AD đôi một vuông góc AB=6a,AC=8a,AD=12a, với a>0,aR. Gọi E,F tương ứng là trung điểm của hai cạnh BC,BD. Tính khoảng cách d từ điểm B đến mặt phẳng (AEF) theo a.

    • A.d=2429a29.
    • B.d=829a29.
    • C.d=629a29.
    • D.d=1229a29.
  • Câu 44:

    Mã câu hỏi: 106210

    Cho hàm số f(x), hàm số y=f(x) liên tục trên R và có đồ thị như hình vẽ bên

    Bất phương trình f(x)<2x+m (m là tham số thực) có nghiệm đúng với mọi x(0;2) khi và chỉ khi

    • A.m>f(2)2.
    • B.mf(2)2.
    • C.mf(0).
    • D.m>f(0).
  • Câu 45:

    Mã câu hỏi: 106211

    Đồ thị hàm số (C):y=2x+1x+1 cắt đường thẳng d:y=x+m tại hai điểm phân biệt A,B thỏa mãn ΔOAB vuông tại O khi m=ab. Biết a,b là nguyên dương; ab tối giản. Tính S=a+b.

    • A.S = 5
    • B.S = 3
    • C.S = 6
    • D.S = 1
  • Câu 46:

    Mã câu hỏi: 106212

    Tìm tất cả các giá trị thực của tham số m để hàm số y=3cos4x+32sin2x+mcosx52 đồng biến trên (32;2π3]. 

    • A.m13.
    • B.m13.
    • C.m<13.
    • D.m>13.
  • Câu 47:

    Mã câu hỏi: 106213

    Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên tạo với đáy một góc 600. Gọi G là trọng tâm của tam giác SBD. Mặt phẳng (α) đi qua A,G và song song với BD, cắt SB,SC,SD lần lượt tại E,M,F. Tính thể tích V của khối chóp S.AEMF.

    • A.d=a3618.
    • B.d=a369.
    • C.d=a366.
    • D.d=a3636.
  • Câu 48:

    Mã câu hỏi: 106214

    Gọi S là tập hợp tất cả các giá trị nguyên thuộc đoạn [-10;10] của m để hàm số y=x33(2m+1)x2+(12m+5)x+2 đồng biến trên khoảng (2;+). Số phần tử của S bằng

    • A.10
    • B.12
    • C.11
    • D.13
  • Câu 49:

    Mã câu hỏi: 106215

    Gọi S là tập hợp tất cả các giá trị thực của tham số m sao cho giá trị nhỏ nhất của hàm số f(x)=34(x33x+2m)2+1 trên đoạn [0;3] bằng 2. Tổng tất cả các phần tử của S bằng

    • A.6.
    • B.8.
    • C.8
    • D.1.
  • Câu 50:

    Mã câu hỏi: 106216

    Cho hàm số y=f(x) xác định trên R. Biết rằng hàm số y=f(x) có đồ thị như hình vẽ

    Số điểm cực trị của hàm số g(x)=f(x22x)(x422x3+x2+2x+1)

    • A.7
    • B.8
    • C.5
    • D.6

Bình luận

Thảo luận về Bài viết

Có Thể Bạn Quan Tâm ?