Bài kiểm tra
Đề thi thử THPT QG năm 2021 môn Toán - Trường THPT Thành Nhân lần 2
1/50
90 : 00
Câu 1: Thể tích của khối cầu bán kính \(a\) bằng
Câu 2: Với \(a\) và \(b\) là hai số thực dương tùy ý, \(\log \left( a{{b}^{2}} \right)\) bằng
Câu 3: Trong không gian Oxyz cho hai điểm \(A\left( 2;3;4 \right)\) và \(B\left( 3;0;1 \right)\). Khi đó độ dài vectơ \(\overrightarrow{AB}\) là:
Câu 4: Cho \(\int\limits_{1}^{2}{f\left( x \right)dx}=2\) và \(\int\limits_{1}^{2}{2g\left( x \right)dx}=8\). Khi đó \(\int\limits_{1}^{2}{\left[ f\left( x \right)+g\left( x \right) \right]dx}\) bằng:
Câu 5: Cho hàm số \(f\left( x \right)\) có đồ thị như hình vẽ bên. Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Câu 6: Tìm nghiệm của phương trình \({{\log }_{2}}\left( x-1 \right)=3.\)
Câu 7: Cho hàm số \(y=f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có bảng biến thiên như hình vẽ:
Hàm số \(y=f\left( x \right)\) là hàm số nào trong các hàm số sau:
Câu 8: Trong không gian \(Oxyz\), đường thẳng \(d:\frac{x-1}{2}=\frac{y}{1}=\frac{z}{3}\) đi qua điểm nào dưới đây?
Câu 9: Cho khối nón có độ dài đường sinh bằng 2a, góc giữa đường sinh và đáy bằng \(60{}^\circ \). Thể tích của khối nón đã cho là:
Câu 10: Trong không gian \(Oxyz\), mặt phẳng \(\left( Oxy \right)\) có phương trình là:
Câu 11: Cho \(\int\limits_0^1 {\left[ {f\left( x \right) – 2g\left( x \right)} \right]{\rm{d}}x} = 12\) và \(\int\limits_0^1 {g\left( x \right){\rm{d}}x} = 5\), khi đó \(\int\limits_0^1 {f\left( x \right){\rm{d}}x} \) bằng
Câu 12: Thể tích của khối lăng trụ tam giác đều có cạnh đáy bằng a và độ dài cạnh bên bằng 2a là:
Câu 13: Tìm công thức tính thể tích của khối tròn xoay khi cho hình phẳng giới hạn bởi parabol \(\left( P \right):y={{x}^{2}}\) và đường thẳng d:y=2x quay xung quanh trục \(Ox\).
- A. \(\pi \int\limits_{0}^{2}{{{\left( {{x}^{2}}-2x \right)}^{2}}\text{d}x}\)
- B. \(\pi \int\limits_{0}^{2}{4{{x}^{2}}\text{d}x}-\pi \int\limits_{0}^{2}{{{x}^{4}}\text{d}x}\)
- C. \(\pi \int\limits_{0}^{2}{4{{x}^{2}}\text{d}x}+\pi \int\limits_{0}^{2}{{{x}^{4}}\text{d}x}\)
- D. \(\pi \int\limits_{0}^{2}{\left( 2x-{{x}^{2}} \right)\text{d}x}\)
Câu 14: Tập nghiệm S của bất phương trình \({{5}^{x+2}}<{{\left( \frac{1}{25} \right)}^{-x}}\) là:
Câu 15: Cho cấp số cộng \(\left( {{u}_{n}} \right)\), biết \({{u}_{2}}=3\) và \({{u}_{4}}=7\). Giá trị của \({{u}_{2019}}\) bằng:
Câu 16: Tìm điểm biểu diễn hình học của số phức \(z=\frac{5}{2+i}\)?
Câu 17: Cho hàm số \(y=f\left( x \right)\) có đồ thị như hình vẽ:
Số điểm cực trị của hàm số đã cho là:
Câu 18: Họ nguyên hàm của hàm số \(f\left( x \right)={{e}^{2x}}+{{x}^{2}}\) là:
Câu 19: Tiếp tuyến của đồ thị hàm số \(y=-{{x}^{3}}+3x-2\) tại điểm có hoành độ \({{x}_{0}}=2\) có phương trình là
Câu 20: Tìm giá trị lớn nhất của hàm số \(f\left( x \right)={{x}^{3}}-3{{x}^{2}}-9x+10\) trên \(\left[ -2;\ 2 \right]\).
Câu 21: Tập nghiệm của bất phương trình \(2{{\log }_{2}}\left( x-1 \right)\le {{\log }_{2}}\left( 5-x \right)+1\) là:
Câu 22: Cho khối chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh a, SA vuông góc với mặt phẳng đáy và cạnh bên SB tạo với mặt phẳng đáy góc \(45{}^\circ \). Thể tích của khối chóp \(S.ABCD\) bằng:
Câu 23: Biết \({{z}_{1}}\) và \({{z}_{2}}\) là 2 nghiệm của phương trình \({{z}^{2}}-4z+10=0\). Tính giá trị của biểu thức \(T=\frac{{{z}_{1}}}{{{z}_{2}}}+\frac{{{z}_{2}}}{{{z}_{1}}}\).
Câu 24: Đạo hàm của hàm số \(y=x.{{e}^{x+1}}\) là:
Câu 25: Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y=-{{x}^{4}}+2{{x}^{2}}-1\) trên đoạn \(\left[ -2;1 \right]\). Tính \(M+m\)?
Câu 26: Phương trình mặt cầu \(\left( S \right)\) có tâm \(I\left( 1;-2;3 \right)\) và tiếp xúc với mặt phẳng \(\left( P \right):x-2y+2=0\) là:
- A. \({{\left( x-1 \right)}^{2}}+{{\left( y+2 \right)}^{2}}+{{\left( z-3 \right)}^{2}}=\frac{121}{9}\)
- B. \({{\left( x+1 \right)}^{2}}+{{\left( y-2 \right)}^{2}}+{{\left( z+3 \right)}^{2}}=\frac{11}{3}\)
- C. \({{\left( x-1 \right)}^{2}}+{{\left( y+2 \right)}^{2}}+{{\left( z-3 \right)}^{2}}=\frac{49}{5}\)
- D. \({{\left( x+1 \right)}^{2}}+{{\left( y-2 \right)}^{2}}+{{\left( z+3 \right)}^{2}}=\frac{49}{5}\)
Câu 27: Cho hàm số \(y=f\left( x \right)\) có đồ thị như hình vẽ:
Số nghiệm của phương trình \(4{{f}^{2}}\left( x \right)-1=0\) là:
Câu 28: Cho hình chóp S.ABC có đáy là tam giác vuông tại A có \(AB=a\sqrt{3},\text{ }AC=a\), tam giác SBC đều và mặt trong mặt phẳng vuông góc với đáy (tham khảo hình vẽ). Góc giữa SA và mặt phẳng đáy là
Câu 29: Cho hình lập phương \(ABCD.\ A'B'C'D'\) với \(O'\) là tâm hình vuông \(A'B'C'D'\). Biết rằng tứ diện \(O'BC\text{D}\)có thể tích bằng \(6{{a}^{3}}\). Tính thể tích V của khối lập phương \(ABCD.\ A'B'C'D'\).
Câu 30: Tập hợp các điểm biểu diễn số phức z thỏa mãn \(\left| z-3i+1 \right|=4\) là:
Câu 31: Cho hàm số \(y=f\left( x \right)\) là hàm số xác định trên \(\mathbb{R}\backslash \left\{ -1;1 \right\}\), liên tục trên mỗi khoảng xác định và có bảng biến thiên như sau:
Số tiệm cận đứng của đồ thị hàm số là:
Câu 32: Cho hàm số \(y=f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình vẽ, diện tích hai phần \({{S}_{1}},{{S}_{2}}\) lần lượt bằng 12 và 3. Giá trị của \(I=\int\limits_{-2}^{3}{f\left( x \right)dx}\) bằng:
Câu 33: Trong không gian với hệ tọa độ \(Oxyz\), hai điểm \(A\left( 1;3;2 \right),B\left( 3;5;-4 \right)\). Phương trình mặt phẳng trung trực của AB là:
Câu 34: Đường thẳng \(\Delta \) là giao của hai mặt phẳng \(\left( P \right):x+y-z=0\) và \(\left( Q \right):x-2y+3=0\) thì có phương trình là:
Câu 35: Cho hàm số \(y=f\left( x \right)\) có đạo hàm là \(f'\left( x \right)={{\left( x-2 \right)}^{4}}\left( x-1 \right)\left( x+3 \right)\sqrt{{{x}^{2}}+3}\). Tìm số điểm cực trị của hàm số \(y=f\left( x \right)\):
Câu 36: Cho hàm số \(y=f'\left( x \right)\) liên tục trên \(\mathbb{R}\) có đồ thị như hình vẽ bên cạnh và hàm số \(\left( C \right):y=f\left( x \right)-\frac{1}{2}{{x}^{2}}-1\). Khẳng định nào sau đây là khẳng định sai?
- A. Hàm số \(\left( C \right)\) đồng biến trên khoảng \(\left( 0;2 \right)\).
- B. Hàm số \(\left( C \right)\) đồng biến trên khoảng \(\left( -\infty ;-2 \right)\).
- C. Hàm số \(\left( C \right)\) nghịch biến trên khoảng \(\left( 2;4 \right)\).
- D. Hàm số \(\left( C \right)\) nghịch biến trên khoảng \(\left( -4;-3 \right)\).
Câu 37: Trên giá sách có 4 quyển sách toán, 3 quyển sách lý, 2 quyển sách hóa. Lấy ngẫu nhiên 3 quyển sách. Tính xác suất để 3 quyển lấy ra thuộc 3 môn khác nhau.
Câu 38: Một khối đồ chơi gồm một khối nón \(\left( N \right)\) xếp chồng lên một khối trụ \(\left( T \right)\). Khối trụ \(\left( T \right)\) có bán kính đáy và chiều cao lần lượt là \({{r}_{1}},{{h}_{1}}\). Khối nón \(\left( N \right)\) có bán kính đáy và chiều cao lần lượt là \({{r}_{2}},{{h}_{2}}\) thỏa mãn \({{r}_{2}}=\frac{2}{3}{{r}_{1}}\) và \({{h}_{2}}={{h}_{1}}\) (tham khảo hình vẽ bên). Biết rằng thể tích của toàn bộ khối đồ chơi bằng \(124c{{m}^{3}}\), thể tích khối nón \(\left( N \right)\) bằng:
Câu 39: Cho \(\int\limits_{0}^{1}{\frac{xdx}{{{\left( 2x+1 \right)}^{2}}}}=a+b\ln 2+c\ln 3\) với a, b, c là các số hữu tỉ. Giá trị của \(a+b+c\) bằng:
Câu 40: Cho hàm số \(f\left( a \right)=\frac{{{a}^{\frac{2}{3}}}\left( \sqrt[3]{{{a}^{-2}}}-\sqrt[3]{a} \right)}{{{a}^{\frac{1}{8}}}\left( \sqrt[8]{{{a}^{3}}}-\sqrt[8]{{{a}^{-1}}} \right)}\) với \(a>0,\,\,a\ne 1\). Giá trị của \(M=f\left( {{2019}^{2018}} \right)\) là
Câu 41: Cho hình chóp \(S.ABCD\) có đáy là hình chữ nhật tâm \(O,\ SD\bot \left( ABCD \right),AD=a\) và \(\widehat{AOD}=60{}^\circ \). Biết SC tạo với đáy một góc \(45{}^\circ \). Tính khoảng cách giữa hai đường thẳng AC và SB.
Câu 42: Cho hàm số \(y=f\left( x \right)\) thỏa mãn điều kiện \(\int\limits_{0}^{2}{\frac{f'\left( x \right)dx}{x+2}}=3\) và \(f\left( 2 \right)-2f\left( 0 \right)=4\). Tính tích phân \(I=\int\limits_{0}^{1}{\frac{f\left( 2x \right)dx}{{{\left( x+1 \right)}^{2}}}}\).
Câu 43: Trong không gian với hệ tọa độ \(Oxyz\), phương trình nào dưới đây là phương trình hình chiếu của đường thẳng \(d:\left\{ \begin{align} & x=-2t \\ & y=t \\ & z=-1-2t \\ \end{align} \right.\) trên mặt phẳng \(\left( P \right):x+y-z+1=0\).
- A. \(\left\{ \begin{align} & x=4+7t \\ & y=-2-2t \\ & z=3+5t \\ \end{align} \right. \)
- B. \(\left\{ \begin{align} & x=4+7t \\ & y=-2+2t \\ & z=3+5t \\ \end{align} \right. \)
- C. \(\left\{ \begin{align} & x=-4+7t \\ & y=-2-2t \\ & z=3+5t \\ \end{align} \right.\)
- D. \(\left\{ \begin{align} & x=4+7t \\ & y=-2-2t \\ & z=-3+5t \\ \end{align} \right.\)
Câu 44: Cho phương trình \(2\sqrt{{{\log }_{3}}\left( 3x \right)}-3{{\log }_{3}}x=m-1\) (với m là tham số thực). Có tất cả bao nhiêu giá trị nguyên dương của tham số m để phương trình trên có nghiệm?
Câu 45: Đồ thị hàm số \(y={{x}^{4}}-4{{x}^{2}}+2\) cắt đường thẳng \(d:y=m\) tại 4 điểm phân biệt và tạo ra các hình phẳng có diện tích \({{S}_{1}},{{S}_{2}},{{S}_{3}}\) thỏa mãn \({{S}_{1}}+{{S}_{2}}={{S}_{3}}\) (như hình vẽ). Giá trị m thuộc khoảng nào sau đây?
Câu 46: Cho hàm số \(f\left( x \right)\) có bảng biến thiên như hình vẽ:
Số điểm cực trị của hàm số \(g\left( x \right)={{\left[ f\left( {{x}^{2}} \right) \right]}^{2}}-3f\left( {{x}^{2}} \right)+1\) là:
Câu 47: Trong không gian tọa độ \(Oxyz\), cho mặt cầu \(\left( S \right):{{\left( x-1 \right)}^{2}}+{{\left( y+1 \right)}^{2}}+{{z}^{2}}=\frac{5}{6}\), mặt phẳng \(\left( P \right):x+y+z-1=0\) và điểm \(A\left( 1;1;1 \right)\). Điểm M thay đổi trên đường tròn giao tuyến của \(\left( P \right)\) và \(\left( S \right)\). Giá trị lớn nhất của \(P=AM\) là:
Câu 48: Cho hàm số y = f(x) có đồ thị trên đoạn [-1;4] như hình vẽ bên. Số giá trị nguyên âm của tham số m để bất phương trình \(m\ge f\left( \frac{x}{2}+1 \right)+{{x}^{2}}-4x\) có nghiệm trên đoạn [-1;4] là
Câu 49: Xét các số phức z thỏa mãn \(\left| z \right|=1\). Đặt \(\text{w}=\frac{2\text{z}-i}{2+iz}\), giá trị lớn nhất của biểu thức \(P=\left| \text{w}+3i \right|\) là
Câu 50: Cho các số thực x, y thỏa mãn \(5+{{16.4}^{{{x}^{2}}-2y}}=(5+{{16}^{{{x}^{2}}-2y}}){{.7}^{2y-{{x}^{2}}+2}}\). Gọi M, m lần lượt là giá trị lớn nhất và nhỏ nhất của biểu thức \(P=\frac{10x+6y+26}{2\text{x}+2y+5}\). Khi đó T=M+m bằng: