Bài kiểm tra
Đề thi thử THPT QG năm 2021 môn Toán - Trường THPT Phan Đình Phùng lần 3
1/50
90 : 00
Câu 1: Công thức tính thể tích khối cầu bán kính \(R\) là:
Câu 2: Cho \(a\) là số thực dương và \(m,n\) là các số thực tùy ý. Trong các tính chất sau, tính chất nào đúng?
Câu 3: Cho số thực dương \(a \) Sau khi rút gọn, biểu thức \(P=\sqrt[3]{a\sqrt{a}}\) có dạng
Câu 4: Số giao điểm của hai đồ thị \(y=f\left( x \right)\) và \(y=g\left( x \right)\) bằng số nghiệm phân biệt của phương trình nào sau đây?
Câu 6: Đồ thị hàm số nào sau đây luôn nằm dưới trục hoành?
Câu 7: Cho hàm số \(f\left( x \right)=\frac{2x+1}{x-3}.\) Chọn mệnh đề sai trong các mệnh đề sau đây?
Câu 8: Thể tích khối lăng trụ tứ giác đều có tất cả các cạnh bằng \(a\) là
Câu 9: Thể tích khối lập phương có cạnh bằng \(3a\) là
Câu 10: Tìm điều kiện của tham số \(b\) để hàm số \(y={{x}^{4}}+b{{x}^{2}}+c\) có 3 điểm cực trị?
Câu 11: Nếu \({{a}^{\frac{13}{17}}}>{{a}^{\frac{15}{18}}}\) và \({{\log }_{b}}\left( \sqrt{2}+\sqrt{5} \right)>{{\log }_{b}}\left( 2+\sqrt{3} \right)\) thì
Câu 12: Công thức tính thể tích khối chóp có diện tích đáy \(B\) và chiều cao \(h\) là
Câu 13: Bảng biến thiên ở hình dưới là của hàm số nào trong bốn hàm số được liệt kê dưới đây.
Câu 14: Cho hàm số \(y=f\left( x \right)\) có đồ thị như hình vẽ:
Mệnh đề nào sau đây sai?
- A. \(\underset{\left[ -2;2 \right]}{\mathop{\max }}\,f\left( x \right)=f\left( 2 \right).\)
- B. \(\underset{\left[ -2;2 \right]}{\mathop{\min }}\,f\left( x \right)=f\left( 1 \right).\)
- C. \(\underset{\left[ -2;2 \right]}{\mathop{\max }}\,f\left( x \right)=f\left( -2 \right).\)
- D. \(\underset{\left[ -2;2 \right]}{\mathop{\min }}\,f\left( x \right)=f\left( 0 \right).\)
Câu 15: Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như sau
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Câu 17: Đường cong trong hình dưới đây là đồ thị của hàm số nào?
Câu 18: Cho số thực \(a>0\) và \(a\ne 1.\) Tìm mệnh đề đúng trong các mệnh đề sau
Câu 19: Cho khối chóp \(S.ABC\) có đáy là tam giác vuông cân tại \(B,SA\) vuông góc với đáy và \(SA=AB=6A. \) Tính thể tích khối chóp \(S.ABC\).
Câu 20: Tìm phương trình của đường tiệm cận ngang của đồ thị hàm số \(y=\frac{3x+2}{x+1}\)
Câu 21: Cho hàm số \(y=f\left( x \right)\) có bảng xét dấu \(f'\left( x \right)\)
Số điểm cực tiểu của hàm số \(y=f\left( x \right)\) là:
Câu 22: Nếu tứ diện có chiều cao giảm 3 lần và cạnh đáy tăng 3 lần thì thể tích của nó
Câu 23: Biết rằng giá trị nhỏ nhất của hàm số \(y=\frac{mx+5}{x-m}\) trên đoạn \(\left[ 0;1 \right]\) bằng \(-7.\) Mệnh đề nào sau đây đúng?
Câu 24: Xét khẳng định: “Với mọi số thực \(a\) và hai số hữu tỉ \(r,s\), ta có \({{\left( a' \right)}^{2}}=a{{'}^{2}}\)”. Với điều kiện nào trong các điều kiện sau thì khẳng định trên đúng.
Câu 25: Đồ thị của hai hàm số \(y=4{{x}^{4}}-2{{x}^{2}}+1\) và \(y={{x}^{2}}+x+1\) có tất cả bao nhiêu điểm chung?
Câu 26: Cho đường cong \(\left( C \right)\) có phương trình \(y=\frac{x-1}{x+1}.\) Gọi \(M\) là giao điểm của \(\left( C \right)\) với trục tung. Tiếp tuyến của \(\left( C \right)\) tại \(M\) có phương trình là
Câu 27: Cho \(a>0\) và khác \(1,b>0,c>0\) và \({{\log }_{a}}b=-2,{{\log }_{a}}c=5.\) Giá trị của \({{\log }_{a}}\frac{a\sqrt{b}}{\sqrt[3]{c}}\) là
Câu 29: Trung điểm các cạnh của hình tứ diện đều tạo thành
Câu 30: Với giá trị nào của \(m\) thì đồ thị hàm số \(y=\frac{2{{x}^{2}}+6mx+4}{mx+2}\) đi qua điểm \(A\left( -1;4 \right)?\)
Câu 31: Tìm tất cả các giá trị tực của tham số \(m\) để hàm số \(y=\frac{x-m}{x+1}\) đồng biến trên từng khoảng xác định.
Câu 32: Cho mặt cầu \(S\left( I;R \right)\) và điểm \(A\) nằm ngoài mặt cầu. Qua \(A\) kẻ đường thẳng cắt \(\left( S \right)\) tại hai điểm phân biệt \(B,C. \) Tích \(AB.AC\) bằng
Câu 33: Giả sử các biểu thức chứa logarit đều có nghĩa. Mệnh đề nào sau đây đúng?
Câu 34: Gọi \(A\) là điểm cực đại của đồ thị hàm số \(y=2{{x}^{3}}-3{{x}^{2}}-1\) thì \(A\) có tọa độ là
Câu 35: Hình hộp chữ nhật \(ABCD.A'B'C'D'\) có tâm mặt cầu ngoại tiếp là điểm \(I.\) Mệnh đề nào sau đây là đúng?
Câu 36: Cho hàm số \(f\left( x \right)\) có bảng xét dấu đạo hàm như hình bên dưới.
Hàm số \(y=f\left( 1-2x \right)\) đồng biến trên khoảng
Câu 37: Tìm tất cả các giá trị của tham số \(m\) để hàm số \(y=m{{x}^{4}}+\left( m-3 \right){{x}^{2}}+3m-5\) chỉ có cực tiểu mà không có cực đại.
Câu 38: Cho hai số thực \(a,b\) thỏa mãn \(1>a\ge b>0.\) Tìm giá trị nhỏ nhất của biểu thức sau \(T=\log _{a}^{2}b+{{\log }_{ab}}{{a}^{36}}\)
Câu 39: Tìm tất cả các giá trị của tham số \(m\) sao cho đồ thị hàm số \(y=\frac{\sqrt{x-1}+2021}{\sqrt{{{x}^{2}}-2mx+m+2}}\) có đúng ba đường tiệm cận.
Câu 40: Cho hàm số \(y=f\left( x \right)\) xác định, liên tục trên mỗi nửa khoảng \(\left( -\infty ;-2 \right]\) và \(\left[ 2;+\infty \right)\) và có bảng biến thiên như dưới đây
Tìm tập hợp các giá trị thực của tham số \(m\) để phương trình \(f\left( x \right)=m\) có hai nghiệm phân biệt.
Câu 41: Cho tứ diện \(ABCD\) có \(AB=2a,AC=3a,AD=4a,\widehat{BAC}=\widehat{CAD}=\widehat{DAB}={{60}^{0}}.\) Thể tích khối tứ diện \(ABCD\) bằng
Câu 42: Diện tích mặt cầu ngoại tiếp một tứ diện đều cạnh \(a\) là
Câu 43: Có bao nhiêu điểm \(M\) thuộc đồ thị hàm số \(y=\frac{x+2}{x-1}\) sao cho khoảng cách từ \(M\) đến trục tung bằng hai lần khoảng cách từ \(M\) đến trục hoành?
Câu 44: Cho lăng trụ \(ABC.A'B'C'\) có đáy là tam giác đều cạnh \(a,\) cạnh bên bằng \(4a\) và tạo với đáy một góc \({{30}^{0}}.\) Thể tích khối lăng trụ \(ABC.A'B'C'\) bằng
Câu 45: Cho đồ thị \(\left( {{C}_{m}} \right):y={{x}^{3}}-2{{x}^{2}}+\left( 1-m \right)x+m.\) Khi \(m={{m}_{0}}\) thì \(\left( {{C}_{m}} \right)\) cắt trục hoành tại ba điểm phân biệt có hoành độ \({{x}_{1}},{{x}_{2}},{{x}_{3}}\) thỏa mãn \(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=4.\) Khẳng định nào sau đây đúng?
Câu 46: Tìm \(m\) để phương trình \({{x}^{6}}+6{{x}^{4}}-{{m}^{2}}{{x}^{3}}+\left( 15-3{{m}^{2}} \right){{x}^{2}}-6mx+10=0\) có đúng hai nghiệm phân biệt thuộc \(\left[ \frac{1}{2};2 \right]?\)
Câu 47: Cho hình chóp \(S.ABCD\) có đáy là hình bình hành. Trên các đoạn \(SA,SB,SC,SD\) lấy lần lượt các điểm \(E,F,G,H\) thỏa mãn \(\frac{SE}{SA}=\frac{SG}{SC}=\frac{1}{3},\frac{SF}{SB}=\frac{SH}{SD}=\frac{2}{3}.\) Tỉ số thể tích khối \(EFGH\) với khối \(S.ABCD\) bằng:
Câu 48: Tìm các giá trị thực của tham số \(m\) để phương trình \(\sqrt{2-x}+\sqrt{1+x}=\sqrt{m+x-{{x}^{2}}}\) có hai nghiệm phân biệt.
Câu 49: Cho hàm số \(y=f\left( x \right).\) Hàm số \(y=f'\left( x \right)\) có đồ thị như hình vẽ bên.
Hàm số \(g\left( x \right)=f\left( x+1 \right)+\frac{{{x}^{3}}}{3}-3x\) nghịch biến trên khoảng nào dưới đây?
Câu 50: Cho hàm số \(f\left( x \right)={{x}^{3}}+m{{x}^{2}}+nx-1\) với \(m,n\) là các tham số thực thỏa mãn \(m+n>0\) và \(7+2\left( 2m+n \right)<0.\) Tìm số điểm cực trị của hàm số \(y=\left| f\left( \left| x \right| \right) \right|.\)